Aplikacje
- AN-V-058Cysteine and cystine in an infusion solution
Determination of cysteine and cystine in an infusion solution.
- AN-V-0591-Methyl-nicotinamide hydrochloride in a standard solution
Determination of 1-methyl-nicotinamide hydrochloride in a standard using Na2CO3 as electrolyte.
- AN-V-060Cysteine and cystine in caseinate
Determination of cysteine and cystine in caseinate after sample preparation with NaOH.
- AN-V-061Iron speciation in water with the Multi-Mode Electrode pro
Accurate determination of Fe(II) and Fe(III) in water is crucial for many industries. Cathodic sweeping voltammetry (CSV) offers a robust, cost-effective solution.
- AN-V-0624-Carboxybenzaldehyde in polyterephthalic acid
4-Carboxybenzaldehyde can be reduced directly on the DME in a solution containing ammonium.
- AN-V-063Cyanide in gases resulting from the incineration of plastic insulating materials
Polarographic determination of cyanide in gases resulting from the incineration of plastic insulation materials after sample preparation.
- AN-V-064Free styrene in polystyrene and mixed polymers
Determination of styrene monomers in polystyrene. Free styrene is converted to a polarographically active pseudonitrosite.
- AN-V-065Tungsten in the organic phase
Determination of W(VI) in the organic phase after digestion
- AN-V-068Cadmium and lead in seawater
Cd and Pb can be determined in seawater samples in the ng/L concentration range by anodic stripping voltammetry on a mercury film electrode (MFE).
- AN-V-069Nickel and cobalt in seawater
Nickel and cobalt can be determined in seawater by adsorptive stripping voltammetry (AdSV) at the HMDE.
- AN-V-070Determination of iodide in glacial acetic acid
Iodide contamination in glacial acetic acid poses risks for downstream processes. Cathodic stripping voltammetry (CSV) at the HMDE offers reliable iodide measurement.
- AN-V-071Rhodium and platinum in drinking water
Rhodium and platinum can be determined in water samples after UV digestion and complexation by adsorptive stripping voltammetry (AdSV) at the HMDE.
- AN-V-072NTA and EDTA in wastewater
NTA and EDTA can be determined as their bismuth complexes at the DME.
- AN-V-073Ascorbic acid in orange juice
Ascorbic acid (vitamin C) can be determined in fruit and vegetable juices at the DME without sample preparation.
- AN-V-074Riboflavin in vitamin tablets
Riboflavin (vitamin B2) can be determined in vitamin preparations at the DME.
- AN-V-075Nicotinamide in vitamin tablets
Nicotinamide (vitamin B3, vitamin PP) can be determined in vitamin preparations at the DME.
- AN-V-076Cobalt in gold plating baths
Cobalt can be determined in the presence of high concentrations of gold at the DME using 5-sulfosalicylic acid as supporting electrolyte and DMG as complexing agent.
- AN-V-077Nickel and cobalt in zinc plant electrolytes (concentrated zinc sulfate solutions)
Nickel can be determined in concentrated zinc solutions by adsorptive stripping voltammetry (AdSV) at the HMDE using ammonia buffer as supporting electrolyte and dimethylglyoxime (DMG) as complexing agent. The determination of cobalt does not work under these conditions as the very high Zn2+ concentration interferes with the Co signal. Therefore, an alternative complexing agent has to be used: α-benzil dioxime in ammonia buffer under addition of sodium nitrite.
- AN-V-078Antimony in zinc solutions
The concentration of total Sb in zinc plant electrolytes is determined by anodic stripping voltammetry (ASV) in 5 mol/L HCl. If 0.6 mol/L HCl is used, only the concentration of antimony(III) is determined selectively. The interference of an excess of Cu is suppressed by the selective oxidation of Cu. Nevertheless, the concentration of Cu in the sample limits the amount of sample that can be used for the determination.
- AN-V-079Germanium in electroplating baths
Germanium can be determined by adsorptive stripping voltammetry (AdSV) at the HMDE using acetate buffer as supporting electrolyte and catechol as complexing agent.
- AN-V-080Germanium in lead
Germanium can be determined by adsorptive stripping voltammetry (AdSV) at the HMDE using acetate buffer as supporting electrolyte and catechol as complexing agent.
- AN-V-081Copper, iron, and vanadium in sodium chloride
Copper, iron, and vanadium can be determined in salt samples in the µg/kg concentration range by adsorptive stripping voltammetry (AdSV) at the HMDE. No sample preparation is necessary.
- AN-V-082Different chromium species in sea water
Cr(III) forms an electrochemically active complex with diethylenetriaminepentaacetic acid (DTPA), so does Cr(VI) after in situ reduction on the surface of the HMDE. Depending on the sample preparation procedure and the waiting time after the addition of the complexing agent, the different chromium species can be differentiated:Total active chromium [total concentration of Cr(VI) and free Cr(III)]:The measurement is carried out immediately after the addition of DTPA.; Cr(VI): Between the addition of DTPA and the start of the analysis a minimum waiting time of 30 min is necessary. During this waiting time the Cr(III)-DTPA complex becomes electrochemically inactive.; Cr(III): The difference between the total active Cr and Cr(VI).; Totalchromium: Determination of total active Cr after UV digestion.;
- AN-V-083Zinc, cadmium, lead, and copper in wastewater after UV digestion
Zinc, cadmium, lead, and copper can be determined in wastewater samples after UV digestion by anodic stripping voltammetry (ASV) according to DIN 38406 part 16.
- AN-V-084Total chromium in wastewater after UV digestion (DTPA method)
Total chromium can be determined in wastewater samples. UV digestion is necessary to remove interfering organic matter before the analysis. Complete oxidation of Cr(III) to Cr(VI) is guaranteed by an additional UV irradiation step at pH > 4.
- AN-V-085Elemental sulfur in gasoline
The concentration of elemental sulfur in gasoline is determined by polarography in acetate containing toluene/methanol electrolyte. The determination is linear up to 2 mg/L with respect to the concentration of elemental sulfur in the measuring vessel. Organic sulfur compounds are not detected with this method. The method is not suitable for diesel fuel, because diesel is not completely soluble in the electrolyte used. The gas wash bottle (6.2405.030) for inert gas supply has to be filled with supporting electrolyte.
- AN-V-086Cadmium, lead, and copper in drinking water
Cd, Pb, and Cu can be determined in one run in acetate buffer by anodic stripping voltammetry (ASV).
- AN-V-087Nickel and cobalt in drinking water using adsorptive stripping voltammetry
Nickel and cobalt can be determined in drinking water in one run by adsorptive stripping voltammetry (AdSV). Dimethylglyoxime (DMG) is used as complexing agent at a pH value of 9.3.
- AN-V-089Mercury in wastewater
Mercury can be determined in wastewater by anodic stripping voltammetry (ASV) on a gold rotating disk electrode (Au RDE). After the addition of hydrochloric acid and hydrogen peroxide, digestion is done by UV irradiation.
- AN-V-090Manganese in drinking water
Manganese in drinking water is determined by anodic stripping voltammetry (ASV) at the HMDE. The measurement is performed in an alkaline solution and zinc solution is added to prevent interference from intermetallic compounds.
- AN-V-092Nickel in white wine after UV digestion
For the determination of nickel in white wine, UV digestion is required to mineralize the sample. The determination is done by adsorptive stripping voltammetry (AdSV) at the HMDE in ammonia buffer with dimethylglyoxime (DMG).
- AN-V-093Zinc, cadmium, lead, and copper in red wine after UV digestion
Zinc, cadmium, lead, and copper can be determined in red wine after UV digestion by anodic stripping voltammetry (ASV).
- AN-V-094Platinum and rhodium in red wine after UV digestion
For the determination of heavy metals in wine, UV digestion is required to mineralize the sample. The determination of platinum and rhodium is carried out with adsorptive stripping voltammetry (AdSV) at the HMDE.
- AN-V-095Quinine in bitter lemon
Quinine can be determined by polarography at the DME using Britton-Robinson buffer at pH = 7.0 as supporting electrolyte.
- AN-V-096Platinum in urine after UV digestion
Platinum in urine can be determined by adsorptive stripping voltammetry (AdSV) after UV digestion of the sample.
- AN-V-097Chromium in sulfuric acid
Cr(VI) is determined with the complexant DTPA at pH 6.2 by adsorptive stripping voltammetry (AdSV) at the HMDE.
- AN-V-098Molybdenum in sulfuric acid
Mo is determined by polarography at the SMDE in nitric acid solution.
- AN-V-099Cadmium, lead, and copper in triphosphate
Cadmium, lead, and copper are determined by anodic stripping voltammetry (ASV) at the HMDE using aqueous nitric acid as supporting electrolyte.
- AN-V-100Nickel and cobalt in triphosphate
Ni and Co are determined in triphosphate by adsorptive stripping voltammetry (AdSV) in ammonia buffer at pH 9.5 with addition of dimethylglyoxime (DMG).
- AN-V-102Manganese in triphosphate
Anodic stripping voltammetry (ASV) at the HMDE is used to determine manganese in triphosphate. The sample is first digested and then measured in an alkaline solution.
- AN-V-103Chromium in lime (CaCO3)
Cr(VI) is determined at the HMDE in an electrolyte containing ethylenediamine and acetate. Because Cr(III) is electrochemically inactive, all Cr has to be oxidised prior to analysis.
- AN-V-104Formaldehyde in metalworking lubricants
Formaldehyde is determined polarographically at the DME in alkaline solution.
- AN-V-105Thallium in the presence of an excess of cadmium in zinc plant electrolytes (concentrated ZnSO4 solutions)
Thallium and cadmium can be determined by anodic stripping voltammetry (ASV) at the HMDE (Tl) and polarography at the DME (Cd), respectively using aqueous hydrochloric acid as supporting electrolyte. Since Cd is present in high excess and would therefore interfere with the determination of thallium, a post electrolysis procedure is applied to remove the co-deposited metal from the mercury drop.
- AN-V-106Nickel and cobalt in wastewater after UV digestion
Determination of nickel and cobalt in wastewater samples through adsorptive Stripping Voltammetry (AdSV). The wastewater samples first undergo a UV digestion in accordance with DIN 38406 Part 16.
- AN-V-107Tin in wastewater after UV digestion
Tin can be determined in wastewater by anodic stripping voltammetry (ASV) in oxalate buffer after addition of methylene blue. Samples with organic substances have to undergo UV digestion before analysis. Samples with higher concentrations of metals can be diluted before digestion.
- AN-V-108Thallium in wastewater after UV digestion
Thallium in wastewater is determined in acetate buffer in presence of EDTA by anodic stripping voltammetry (ASV). Samples with organic substances have to undergo UV digestion before analysis.
- AN-V-109Selenium in wastewater after UV digestion
Selenium is determined by cathodic stripping voltammetry (CSV) at the hanging mercury drop electrode (HMDE). Se(IV) is deposited on the surface of the mercury drop in sulfuric acid electrolyte under addition of copper ions as Cu xSe y.Wastewater samples containing organic contaminants have to be digested by UV irradiation before analysis. In addition, the sample has to undergo a second irradiation step at pH 7−9 to reduce Se(VI) to Se(IV), since only Se(IV) is electrochemically active.
- AN-V-110Total chromium in wastewater after UV digestion (polarography method with ethylene diamine)
Cr(VI) is determined by polarography at the SMDE in acetate solution containing ethylene diamine to mask interfering copper ions.Only Cr(VI) is electrochemically active. It is for that reason that all chromium compounds must be present before the analysis as CR(VI), which is guaranteed by UV radiation with a pH > 4.
- AN-V-111Germanium in zinc plant electrolytes (concentrated ZnSO4 solutions)
Germanium is determined by adsorptive stripping voltammetry (AdSV) at the HMDE using aqueous sulfuric acid as supporting electrolyte and pyrocatechol violet as complexing agent. It is possible to determine 20 µg/L Ge in a sample containing 150 g/L Zn, 3 g/L Cd and 1 mg/L Pb.
- AN-V-112Thiourea in nickel plating baths
Thiourea is determined by cathodic stripping voltammetry (CSV) at the HMDE in ammonia buffer at pH 8.9. Chloride in the sample does not interfere with this determination.