Ứng dụng
- WP-014High productivity and profitability in IC environmental analysis
Brad Meadows is Vice President and Lab Director at the US company BSK Labs, which runs a number of environmental laboratories and service centers. Brad is an analytical chemist and has been working in the management of analysis laboratories for 15 years. He shared his experiences with Metrohm ion chromatography with us in the form of some concrete facts and figures.
- WP-078Flo hữu cơ có thể hấp phụ (AOF) để sàng lọc PFAS trong nước
Learn about PFAS, their impact on water quality, EU Directive 2020/2184, and the benefits of AOF measurement using combustion ion chromatography (CIC).
- WP-082Measuring inorganic cations and amines with ion chromatography mass spectrometry (IC-MS)
This white paper presents IC-MS as powerful analysis technique. This multiparameter method determines various analytes such as inorganic cations and amines in one run.
- WP-086Measuring organic acids and inorganic anions with ion chromatography mass spectrometry
This White Paper focuses on selected IC-MS applications for the straightforward identification and quantification of organic acids and inorganic anions in different matrices.
- WP-093Significant cost savings through dynamic ventilation during nitrification in wastewater treatment
This White Paper gives an overview of the energy-intensive nitrification process that converts ammonia into less harmful nitrogen compounds at wastewater treatment plants (WWTPs). It displays the results from a field test at a WWTP, showcasing the positive influence of single-method process analyzers on the efficiency of the nitrification process.
- 8.000.6033Analysis of energetic materials in various water and soil samples using HPLC and LC-MS
In modern days, a new breed of energetic (explosive) materials is emerging. Traditional aromatic nitrates are still in use, but there is dire need of analytical techniques for energetic materials in the chemical class of peroxides, azo etc. This presentation will demonstrate the use of a modern HPLC system with traditional detector (DAD) and also coupled with mass spectrometry for the analysis of abovementioned various classes of energetic materials.
- 8.000.6071Trace-level determination of anions in the primary circuit of a PWR-type nuclear power plant using ion chromatography after inline sample preparation
The poster presents the ion chromatographic determination of organic degradation products such as glycolate, formate and acetate besides the standard anions fluoride, chloride, nitrate and sulfate.
- 8.000.6016Advantages of multidimensional ion chromatography for trace analysis
The analytical challenge treated in the present work consists in detecting trace concentrations (ppb) of bromide in the presence of a strong chloride matrix. This problem was overcome by separating the bromide ions from the main fraction of the early eluting chloride matrix (several g/L) by applying two sequential chromatographic separations on the same column. After the first separation, the main fraction of the interfering chloride matrix is flushed to waste, while the later eluting anions are diverted to an anion-retaining preconcentration column. After elution in counter flow, the bromide ions are efficiently separated from the marginal chloride residues. The four-point calibration curves for bromide and sulfate are linear in the range of 10…100 µg/L and 200…800 µg/L and yield correlation coefficients of 0.99988 and 0.99953 respectively. For the method shown here, a second injection valve and a preconcentration column are the only additional devices needed to master this demanding separation problem.
- 8.000.6058Analysis of airborne particulate matter by PILS-IC
This study compares air sampling data obtained by a filter-based method including off-line manual filter extraction followed by ion chromatographic analysis with those gained by an automated Particle-Into-Liquid-Sampler coupled to an ion chromatograph (PILS-IC).PILS-IC is a straightforward instrument for aerosol sampling that provides near real-time measurements for long-term unattended operation and is thus an indispensable tool to monitor rapid changes in aerosol particle ionic composition.
- 8.000.6086Semi-continuous determination of anions, cations, and heavy metals in aerosols using PILS-IC-VA
This poster presents an approach that couples a Particle-Into-Liquid-Sampler (PILS) to a dual-channel ion chromatograph (IC) for measurement of aerosol anions and cations and a voltammetric measuring stand (VA) to determine the heavy metals. Feasibility of the PILS-IC-VA online system was demonstrated by collecting aerosol samples in Herisau Switzerland, at defined time intervals; air pollution events were simulated by burning lead- and cadmium-coated sparklers.
- TA-004Trace determination of bromate in water
This article describes rapid and sensitive bromate determination in drinking and table water by means of anion chromatography with post-column derivatization and subsequent spectrophotometric detection.
- TA-052IC-ICP-MS analysis of iodized X-ray contrast media
On the basis of the experiments that have been performed, it is possible to determine the effectiveness of the ozonization of iodized X-ray contrast media using IC-ICP-MS via the amount of iodate formed. Whereas a 120-minute ozonization guarantees a practically quantitative decomposition of amidotrizoic acid to iodate, approximately 16% of the Iomeprol is still present under the same ozonization conditions. Given that only 14% is present in iodate form in the absence of iodide anions and given that additional, not yet identified peaks occur in the ion chromatogram, the presence of additional decomposition products containing iodine must be assumed. Nonetheless, it is not possible to detect the intact iodized X-ray contrast media with the selected ion chromatographic conditions. Furthermore, the possibility exists of identifying the peak of the unknown decomposition product of the Iomeprol using IC-ESI-TOF-MS.
- TA-040Automation for the determination of chemical oxygen demand (COD)
In the event of a large number of samples, it makes sense to apply automation to the individual steps of COD determination. This article indicates the extent to which automation can be applied for the determination of chemical oxygen demand with the help of a system especially designed for that purpose.
- TA-054Online monitoring of atmospheric inorganic gases and aerosols in the Southeast and Northwest of the United States
This article describes the composition of atmospheric inorganic gases and aerosols in the Southeast and Northwest of the United States during a time period of several weeks. The semicontinuous sampling in hourly cycles takes place using the MARGA system from Metrohm Applikon. The temporal resolution of the aerosol and gas composition makes it possible to generate statements regarding the chemical origin and hygroscopicity of the particles. These are fundamental for rating the influence of aerosols on the climate.
- AB-317Determination of iron in the µg/L-range by polarography
This Application Bulletin describes two methods for the determination of iron at the Multi Mode Electrode. Method 1, the polarographic determination at the DME, is recommended for concentrations of β(Fe) > 200 μg/L. For this method the linear range is up to β(Fe) = 800 μg/L. For concentrations < 200 μg/L Method 2, the voltammetric determination at the HMDE, is to be preferred. The detection limit for this method is β(Fe) = 2 μg/L, the limit of quantification is β(Fe) = 6 μg/L. The sensitivity of the method cannot be increased by deposition. Iron(II) and iron(III) have the same sensitivity for both methods. These methods have been elaborated for the determination of iron in water samples. For water samples with high calcium and magnesium concentrations such as, for example, seawater, a slightly modified electrolyte is used in order to prevent precipitation of the corresponding metal hydroxides. The methods can also be used for samples with organic loading (wastewater, beverages, biological fluids, pharmaceutical or crude oil products) after appropriate digestion.
- AB-431Determination of iron, copper and vanadium by adsorptive stripping voltammetry
This Application Bulletin describes the voltammetric determination of the elements iron, copper and vanadium. Fe as well as Cu and V can be determined as catechol complex at the HMDE by adsorptive stripping voltammetry (AdSV). Fe(II) and Fe(III) are determined as Fe(total) with the same sensitivity for both species in either phosphate buffer or PIPES electrolyte. Cu and V can be determined in PIPES buffer. The methods are primarily suitable for the investigation of ground, drinking and surface waters, in which the concentration of these metals is important. But the methods can naturally also be used for trace analysis in other matrices. The limit of detection for all three elements in PIPES buffer is 0.5 ... 1 µg/L, for iron in phosphate buffer it is approx. 5 µg/L.
- AB-439Voltammetric determination of iron in water samples with a Bi drop electrode
Iron is an essential element in the human diet and is found in many natural and treated waters. Therefore, the World Health Organization (WHO) does not issue a health-based guideline value for iron. Higher concentrations of iron in surface waters can indicate the presence of industrial effluents or outflow from other operations and sources of pollution. Because of this, precise, rapid, and accurate iron determination at low concentrations in environmental and industrial samples is of great importance. This can be achieved with the method described in this Application Bulletin.
- AB-036Half wave potentials of metal ions for the determination by polarography
In the following tables, the half-wave potentials or peak potentials of 90 metal ions are listed. The half-wave potentials (listed in volts) are measured at the dropping mercury electrode (DME) at 25 °C unless indicated otherwise.
- AB-057Polarographic determination of nicotine
The quantitative determination of the alkaloid nicotine, which is an essential constituent of the tobacco plant, can be carried out by polarography. The quantification limit is less than 0.1 mg/L in the polarographic vessel.
- AB-101Complexometric titrations with the Cu ISE
This Bulletin describes the complexometric potentiometric titration of metal ions. An ion-selective copper electrode is used to indicate the endpoint of the titration. Since this electrode does not respond directly to complexing agents, the corresponding Cu complex is added to the solution. With the described electrode, it is possible to determine water hardness and to analyze metal concentrations in electroplating baths, metal salts, minerals, and ores. The following metal ions have been determined: Al3+, Ba2+, Bi3+, Ca2+, Co2+, Fe3+, Mg2+, Ni2+, Pb2+, Sr2+, and Zn2+.
- AB-110Determination of free cyanide by polarography
This Application Bulletin describes a polarographic method for the determination of cyanide that allows to determine free cyanide fast and accurately. The determination also succeeds in solutions containing sulfides, where other methods fail. Cyanide concentrations in the range b(CN–) = 0.01...10 mg/L cause no problems. Interference caused by anions and complexed cyanides has been investigated.
- AB-113Determination of cadmium, lead and copper in foodstuffs, waste water and sewage sludge by anodic stripping voltammetry after digestion
Cadmium, lead, and copper can be determined simultaneously in oxalate buffer by anodic stripping voltammetry (ASV) after digestion with sulfuric acid and hydrogen peroxide. Tin present in the sample does not interfere with the determination of lead. For the voltammetric determination of tin please refer to Application Bulletin no. 176.
- AB-125Simultaneous determination of calcium, magnesium, and alkalinity by complexometric titration with potentiometric or photometric indication in water and beverage samples
This bulletin describes the determination of calcium, magnesium, and alkalinity in water by complexometric titration with EDTA as titrant. It is grouped into two parts, the potentiometric determination and the photometric determination. There are multiple definitions of the different types of water hardness. In this Application Bulletin, the following definitions are used: alkalinity, calcium hardness, magnesium hardness, total hardness, and permanent hardness. Explanations of these definitions and other expressions are provided in the Appendix. Determination of alkalinity during the photometric part is carried out in a separate acid-base titration before the complexometric titration of calcium and magnesium in water. Permanent hardness can be calculated from these values. The determination of calcium and magnesium in beverages (fruit and vegetable juices, wine) is also described. The photometric part includes the determinations of total and calcium hardness and thereby indirectly magnesium hardness using Eriochrome Black T and calconcarboxylic acid as indicators (in accordance with DIN 38406-3).
- AB-133Determination of ammonia with the ion-selective electrode – Tips and tricks for a reliable determination according to common standards
Although the known photometric methods for the determination of ammonia/ammonium are accurate, they require a considerable amount of time (Nessler method 30 min, indophenol method 90 min reaction time). A further disadvantage of these methods is that only clear solutions can be measured. Opaque solutions must first be clarified by time-consuming procedures. These problems do not exist with the ion-selective ammonia electrode. Measurements can be easily performed in waste water, liquid fertilizer, and urine as well as in soil extracts. Especially for fresh water and waste water samples several standards, such as ISO 6778, EPA 350.2, EPA 305.3 and ASTM D1426, describe the analysis of ammonium by ion measurement. In this Application Bulletin, the determination according to these standards is described besides the determination of other samples as well as some general tips and tricks on how to handle the ammonia ion selective electrode. Determination of ammonia in ammonium salts, of the nitric acid content in nitrates, and of the nitrogen content of organic compounds with the ion-selective ammonia electrode is based on the principle that the ammonium ion is released as ammonia gas upon addition of excess caustic soda: NH4+ + OH- = NH3 + H2O The outer membrane of the electrode allows the ammonia to diffuse through. The change in the pH value of the inner electrolyte solution is monitored by a combined glass electrode. If the substance to be measured is not present in the form of an ammonium salt, it must first be converted into one. Organic nitrogen compounds, especially amino compounds are digested according to Kjeldahl by heating with concentrated sulfuric acid. The carbon is oxidized to carbon dioxide in the process while the organic nitrogen is transformed quantitatively into ammonium sulfate.
- AB-176Determination of lead and tin by anodic stripping voltammetry
In most electrolytes the peak potentials of lead and tin are so close together, that a voltammetric determination is impossible. Difficulties occur especially if one of the metals is present in excess. Method 1 describes the determination of Pb and Sn. Anodic stripping voltammetry (ASV) is used under addition of cetyltrimethylammonium bromide. This method is used when: • one is mainly interested in Pb • Pb is in excess • Sn/Pb ratio is not higher than 200:1 According to method 1, Sn and Pb can be determined simultaneously if the difference in the concentrations is not too high and Cd is absent. Method 2 is applied when traces of Sn and Pb are found or interfering TI and/or Cd ions are present. This method also uses DPASV in an oxalate buffer with methylene blue addition.
- AB-186Determination of aluminum in water samples by adsorptive voltammetry
This Bulletin describes the voltammetric determination of aluminum in water samples down to a concentration of 1 μg/L. An aluminum complex is formed with alizarin red S (DASA) and enriched at the HMDE. The following determination employs differential pulse adsorptive stripping voltammetry (DP-AdSV). Disturbing Zn ions are eliminated by addition of CaEDTA.
- AB-196Determination of formaldehyde by polarography
Formaldehyde can be determined reductively at the DME. Depending on the sample composition it may be possible to determine the formaldehyde directly in the sample. If interferences occur then sample preparation may be necessary, e.g. absorption, extraction, or distillation.Two methods are described. In the first method formaldehyde is reduced directly in alkaline solution. Higher concentrations of alkaline or alkaline earth metals interfere. In such cases the second method can be applied. Formaldehyde is derivatized with hydrazine forming the hydrazone, which can be measured polarographically in acidic solution.
- AB-226Determination of arsenic by stripping voltammetry at the rotating gold electrode
This Bulletin describes the determination of arsenic by anodic stripping voltammetry (ASV) at the rotating gold electrode. A determination limit of 0.5 μg/L can be achieved with 10 mL sample solution. A differentiation between the As(III) concentration and the total arsenic concentration can be made by appropriate selection of the deposition potential. The analyses are performed with a special gold electrode whose active surface is located laterally; c(HCl) = 5 mol/L is used as supporting electrolyte. For the determination of the total arsenic content, As(III) and As(V) are reduced at -1200 mV by nascent hydrogen to As0, which is preconcentrated on the electrode surface. If the deposition is carried out at -200 mV then only As(III) is reduced; this allows the differentiation between total arsenic and As(III). During the subsequent voltammetric determination the preconcentrated As0 is again oxidized to As(III).
- AB-438Determination of cadmium and lead in water samples by anodic stripping voltammetry with a Bi drop electrode
Heavy metals, particularly cadmium and lead, are known to be highly toxic to humans. Therefore, controlling the cadmium and lead content in drinking water is of utmost importance. In many countries, the limit in drinking water for cadmium is between 3–5 µg/L, and for lead it is between 5–15 µg/L. These trace concentrations can reliably be determined with the method described in this Application Bulletin. The determination is carried out by anodic stripping voltammetry (ASV) using the non-toxic Bi drop electrode in a slightly acidic electrolyte.
- AB-053Determination of ammonium or Kjeldahl nitrogen
The potentiometric titration of Kjeldahl nitrogen is one of the most common analytic procedures. It is referenced in numerous standards, ranging from the food and animal feed industries through sewage and waste analysis and all the way to the fertilizer industry. As a rule, the samples are digested with concentrated sulfuric acid with the addition of a catalyst. The ammonium sulfate that is formed is distilled as ammonia in alkali solution, collected in an absorption solution and titrated there. This Bulletin provides a detailed description of potentiometric nitrogen determination following distillation of the digestion solution, followed by a discussion of the possibilities of coulometric titration (without distillation).
- AB-102Conductometry
This bulletin contains two parts. The first part gives a short theoretical overview while more details are offered in the Metrohm Monograph Conductometry. The second, practice-oriented part deals with the following subjects: Conductivity measurements in general Determination of the cell constant Determination of the temperature coefficient Conductivity measurement in water samples TDS – Total Dissolved Solids Conductometric titrations
- AB-433Determination of lead in water with the scTRACE Gold modified with a silver film
Lead is known to be highly toxic and lead salts are easily absorbed by creatures. By interfering with enzyme reactions, lead can affect all parts of the human body. It can cause severe damage to brain and kidneys and can cross the bloodbrain barrier. Cases of chronic lead poisoning caused by lead metal used in the water piping system are well known. Therefore, the control of drinking water for lead content is of utmost importance. In many countries (e.g., EU, USA), the limit for lead in drinking water is between 10 and 15 μg/L. These concentrations can reliably be determined with the method described in this Application Bulletin. The determination is carried out by anodic stripping voltammetry at a silver film applied to the scTRACE Gold electrode.
- AB-121Determination of nitrate with the ion-selective electrode
It has been known for years that consuming too much nitrates from foodstuffs can result in cyanosis, particularly for small children and susceptible adults. According to the WHO standard, the hazard level lies at a mass concentration c(NO3-) ≥ 50 mg/L. However, more recent studies have shown that when nitrate concentrations in the human body are too high, they can (via nitrite) result in the formation of carcinogenic and even more hazardous nitrosamines.Known photometric methods for the determination of the nitrate anion are time-consuming and prone to a wide range of interferences. With nitrate analysis continually increasing in importance, the demand for a selective, rapid, and relatively accurate method has also increased. Such a method is described in this Application Bulletin. The Appendix contains a cselection of application examples where nitrate concentrations have been determined in water samples, soil extracts, fertilizers, vegetables, and beverages.
- AN-H-034Determination of calcium and magnesium in process samples
Determination of calcium and magnesium in process solutions.
- AN-S-272Column-switching method for anions in water samples with two different analytical requirements
Determination of fluoride, chloride, nitrate, phosphate, and sulfate on a short column or the ions mentioned plus bromate and nitrite on a long column in water samples applying intelligent column-switching using anion chromatography with conductivity detection after sequential suppression.
- AN-S-280Ten anions in an offshore effluent
Determination of acetate, chloride, nitrite, bromide, nitrate, phosphate, sulfate, oxalate, fumarate, and molybdate using anion chromatography with conductivity detection after chemical suppression.
- AN-S-360Soluble tungsten and molybdenum in soil
Soluble tungsten and molybdenum are available in soil mainly as their oxosalts, tungstate and molybdate. Tungstate is rather a hazardous compound, which may interfere with plant growth. Molybdate, on the other hand, is a required micronutrient, required e.g. for nitrate fixation in legumes. Both can easily be determined after alkaline digestion with ion chromatography followed by conductivity detection after chemical suppression.
- AN-S-065Chloride and sulfate in dust
Determination of chloride and sulfate in dust using anion chromatography with conductivity detection after chemical suppression. Sample: dust sample Sample preparation: 0.1 g of dust dissolved in 100 mL c(HNO3) = 0.02 mol/L 0.45 µm filtration
- AN-S-069Chloride, bromide, and sulfate in wastewater (photographic industry)
Determination of chloride, bromide, and sulfate in photographic process wastewater using anion chromatography with conductivity detection after chemical suppression.
- AN-S-071Traces of chlorite and nitrite using amperometric detection
Determination of chlorite and nitrite using anion chromatography with amperometric detection at the carbon paste electrode after chemical suppression.
- AN-S-073Determination of three anions in seawater
Determination of chloride, bromide, and sulfate in seawater using anion chromatography with conductivity detection after chemical suppression.
- AN-S-106Four anions in process wastewater using the column Metrosep A Supp 1 - 250/4.6
Determination of chloride, nitrate, bromide, and sulfate in process wastewater using anion chromatography with conductivity detection after chemical suppression.
- AN-S-129Total phosphate in wastewater after digestion with peroxodisulfate
Determination of total phosphate in wastewater after digestion with peroxodisulfate using anion chromatography with conductivity detection after chemical suppression.
- AN-U-013HEDPA, PBTC, and NTP
Determination of HEDPA, PBTC, and NTP using anion chromatography with UV/VIS detection after post column reaction (PCR).
- AN-U-074Determination of nitrite and nitrate in tobacco by ion chromatography with UV/VIS detection
Nitrite in tobacco facilitates the release of tobacco-specific nitrosamines. Most of these nitrosamines are carcinogenic. Therefore, the determination of nitrite in tobacco is required. This application describes the determination of nitrite and nitrate in acetic acid extracts of tobacco. The ion chromatographic separation is followed by UV/VIS detection after sequential suppression.
- WP-001Chromium(VI) determination in children's toys
This article describes a simple and sensitive method for chromium(VI) determination in children's toys. The solution to be analyzed is prepared in accordance with DIN EN 71. Not only VIS detection but also post-column derivatization using diphenylcarbizide are parts of this method. The procedure described here is suitable for the precise determination of hexavalent chromium in the single-digit ppt range and, in addition, fulfils without difficulty the limit value of 10 ppt prescribed by the EU directive 2009/48/EC.
- WP-081Xác định nhanh AOX trong nước theo DIN 38409-59
Monitor adsorbable organic halogens (AOX) in water using combustion ion chromatography (CIC) for precise analysis of AOCl, AOBr, AOI, and total AOX.
- WP-090Automated water hardness determination according to ASTM D8192
The ASTM D8192 standard allows analysts to determine water hardness in different water matrices by complexometry with automated photometric endpoint recognition, increasing the reproducibility and the precision of the results.
- WP-095The future of manufacturing and commercializing green ammonia with electrochemistry
Free White Paper outlines the fundamental principles of the nitrogen reduction reaction. It then delves into the technical barriers hindering the industrialization of green ammonia production, their impact on final yield and selectivity, and potential strategies or research gaps to overcome these issues.
- 8.000.6028Ultratrace determination of uranium(VI) in drinking water by adsorptive stripping voltammetry according to DIN 38406-17
A convenient adsorptive cathodic stripping voltammetric (AdCSV) method has been developed for trace determination of uranium(VI) in drinking water samples using chloranilic acid (CAA). The presence of various matrix components (KNO3, Cl-, Cu2+, organics) can impair the determination of the uranium-CAA complex. The interferences can be mitigated, however, by appropriate selection of the voltammetric parameters. While problematic water samples still allow uranium determination in the lower µg/L range, in slightly polluted tap water samples uranium can be determined down to the ng/L range, comparable to the determination by current ICP-MS methods.