Application Finder
- AN-CS-011Cation traces in lithium hexafluorophosphate
Lithium hexafluorophosphate (LiPF6) is used as an electrolyte in rechargeable batteries. Its high solubility in non-polar solvents and its non-coordinating character in particular make lithium hexafluorophosphate the ideal salt for use in lithium-ion cells. This Application describes the determination of cation traces in LiPF6 with conductivity detection following sequential suppression.
- AN-CS-016Metrosep C Supp 2 - 150/4.0: Amines applying suppressed cation chromatography
The Metrosep C Supp 2 column family is polystyrene/divinylbenzene based and therefore sequential cation suppression may be applied. This AN shows the separation and detection of different amines on the 150 mm version of the column with subsequent conductivity detection after sequential cation suppression.
- AN-CS-010Traces of lithium and sodium besides monoethanolamine in water-steam circuits of thermal power plants
Boiler feed water is a working medium in thermal power plant. To keep corrosion low, the pH value should be in the slightly alkali range, which is why amines are added to the feed water. This addition must be monitored regularly. Also important is the monitoring of the sodium concentration, because an increase of this indicates that cooling water is seeping into the condenser. Ion chromatography with conductivity detection following sequential suppression is the optimum system for monitoring, particularly in combination with intelligent Sample Preconcentration and Matrix Elimination.
- 410000054-ATechnical Note: Method Development with NanoRam®-1064
Although the process of building, validating and using a method is well-defined through software, the robustness of the method is dependent on proper practice of sampling, validation, and method maintenance. In this document, we will detail the recommended practices for using the multivariate method with NanoRam-1064. These practices are recommended for end users who are in the pharmaceutical environment, and can expand to other industries as well. This document aims to serve as a general reference for NanoRam-1064 users who would like to build an SOP for method development, validation and implementation.
- AB-434Water in lithium ion battery materials – Reliable and precise determination by Karl Fischer titration
Lithium-ion batteries must be completely free of water (concentration of H2O < 20 mg/kg), because water reacts with the conducting salt, e.g., LiPF6, to form hydrofluoric acid.The water content of several materials used in lithium ion batteries can be determined reliably and precisely by coulometric Karl-Fischer titration. In this Application Bulletin the determination for the following materials is described:raw materials for the manufacture of lithium-ion batteries (e.g., solvents for electrolytes, carbon black/graphite); electrode coating preparations (slurry) for anode and cathode coating; the coated anode and cathode foils as well as in separator foil and in the combined material; electrolytes for lithium-ion batteries;
- AN-H-092Analysis of zirconium acetate
Automated determination of the zirconium content of zirconium acetate, as well as other zirconium compounds which can be rendered soluble as zirconium acetate.
- AN-CIC-020Fluorine in coal sample applying Metrohm Combustion IC
Coal contains a certain amount of fluorine, chlorine, and sulfur compounds. During combustion of the coal, these components release corrosive acids (e.g., fluorine compounds form hydrofluoric acid). Thermal power plants therefore request low-fluorine coal to avoid massive hydrofluoric acid production. In this application note, fluorine content in coal is determined by ion chromatography after pyrohydrolysis.
- AN-CIC-011Analysis of an ion exchanger using Metrohm Combustion IC
The manufacture of ultrapure water for the pharmaceuticals industry or the semiconductor industry requires high-quality ion exchangers. Metrohm Combustion Ion Chromatography is an indispensable tool in this connection for testing the purity of anion exchange material. The output sample was wet and had to be dried at 105 °C in a special oven with waste air evacuation.Keyword: pyrohydrolysis
- AN-NIR-038Rapid determination of biochemical methane potential with NIR
This Application Note shows that the NIR solution based on the combination of Metrohm NIRS DS2500 analyzer and "Ondalys Flash BMP®" prediction model enable a time-saving and efficient determination of the BMP of various substrates that are used with anaerobic fermentation during biogas production. In contrast to the standard procedure, the results become available within just a few minutes. It is for that reason that this solution offers an alternative option for the optimization of anaerobic fermentation and thus the methane yields.
- AN-NIR-117Analysis of moisture, ash, carbon, and volatile content in coal by NIRS
Conventional methods used to analyze moisture, ash, fixed carbon, and volatile content in coal samples, are time consuming and costly. Near-infrared (NIR) spectroscopy is excellently suited to determine all parameters simultaneously in less than one minute without any sample preparation.
- AN-C-126Methylamines and ethanolamines (Metrosep C 4 - 150/4.0)
Determination of monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA) using cation chromatography with direct conductivity detection.
- AN-C-132Traces of lithium, sodium, and ammonium in the presence of ethanolamine (Metrosep C 4 - 250/4.0)
Determination of lithium, sodium, ammonium, and monoethanolamine (MEA) using cation chromatography with direct conductivity detection and Metrohm Inline Preconcentration and Inline Calibration.
- AN-C-083Online monitoring of trace levels of cations in boiler feed water
Determination of trace levels of lithium, sodium, ammonium, potassium, magnesium, and calcium in boiler feed water using cation chromatography with direct conductivity detection.
- AN-C-139Cations and amines in the water-steam cycle
Water in steel-based cooling systems requires a pH value slightly above 7 to prevent corrosion. Often ammonium or organic amines are applied for pH adjustement. This application shows the separation of typical amines besides inorganic cations. Sample preconcentration applies combined Inline Preconcentration and Matrix Elimination (MiPCT-ME).
- AN-C-137Copper, nickel, zinc, and common cations in the water-steam cycle of a boiling water reactor (BWR)
Water chemistry of the water-steam cycle is crucial for maintaining plant reliability and for ensuring optimal plant operational conditions. Impurities such as corrosion products in ionic, colloidal, or oxide forms are ubiquitous in feedwater, condensate, and reactor coolant. This application shows the determination of sub-ppb levels of Cu, Ni, Zn and standard cations (e.g., Na+, NH4+, Mg2+, Ca2+) in the water-steam cycle of a BWR.
- AN-N-005Traces of silica (SiO2) in water (e.g., boiler water) after preconcentration
Determination of silica (as silicate) in pure water with preconcentration using anion chromatography with direct conductivity detection (without any post-column reaction).
- AN-Q-005Online analysis of trace anions in power plant water matrices
A setup that allows online sampling is crucial for immediate and contamination-free analysis of power plant water samples. This application recommends a setup that facilitates simultaneous anion/cation determinations. Automated inline sample preparation combines variable preconcentration (MiPCT) and calibration with a single multi-ion standard. AN-Q-004 displays the respective cation results.
- AN-V-204Determination of indium in electrolyte solutions for production of CIGS solar cells
This Application Note describes the polarographic determination of indium in electroplating baths used in the production of copper indium gallium diselenide thin-film solar cells (CIGS cells). The CIGS absorber layer is electrodeposited on the molybdenum-coated substrate. Indium analysis is carried out after dilution of the bath sample with sulfuric acid as supporting electrolyte.
- AN-V-239Iron speciation in LiFePO4 batteries
Lithium iron phosphate batteries offer users safety and durability. Polarographic speciation evaluates Fe(II) and Fe(III) in cathode material, useful for several tests.
- AN-PAN-1013Online analysis of boric acid in the cooling water of pressurized water reactors
Boric acid requires precise monitoring in the primary circuit to control nuclear reactor reactivity. The 2060 TI Process Analyzer monitors boric acid online in near-real time.
- AN-PAN-1016Online analysis of silica in boiler feed water of power plants
Excessive silica concentrations in the boiler feed water can lead to deposits on turbine blades and must therefore be avoided. Silica analysis is carried out via differential photometry using a leading-edge technology thermostatic cuvette module for non-sample contact at the detector. Typical concentration ranges for silica are 0–50 ppb and 0–1 ppm or higher.
- AN-PAN-1032Monitoring corrosion in power plants with online process analysis
Corrosion in the water-steam circuit of power plants leads to shorter lifetimes of most metal components and potentially dangerous situations. Flow Accelerated Corrosion (FAC) is a specific case, leading to thinned pipes and elevated Fe concentrations in the circuit. Additionally, metal transport issues such as with Cu from copper heat exchangers can lead to deposition on the high pressure turbine blades, decreasing their efficiency. Current methods can monitor but not prevent these issues, and analysis times are extremely long (up to three weeks). In combination with the power plant’s Distributed Control System (DCS), online monitoring of Fe and Cu with the 2060 Process Analyzer from Metrohm Process Analytics ensures that corrosion can be controlled before it affects the power plant efficiency, ultimately decreasing downtime and lowering maintenance costs. Results are offered within 20 minutes, allowing fast adjustments to the water-steam circuit to protect company assets.
- AN-PAN-1015Calcium and sulfate in flue-gas desulfuration
This Process Application Note deals with the online monitoring of calcium and sulfate in flue gas scrubbing solutions using titration. Other contaminants that can be measured are sulfite, chloride, and chlorine. Low concentrations of heavy metals such as cadmium, zinc, copper, and lead can be measured in the ppb/ppm range with the ADI 2045VA Process Analyzer using voltammetry.
- AN-PAN-1038Power generation: Analysis of the m value (Alkalinity) in cooling water
One way to maximize heat transfer efficiency and reduce costs in a power plant is by controlling the water chemistry in the cooling circuit. This cooling water is kept alkaline to maintain the protective oxide layer on the metal piping throughout the water circuit. However alkalinity above the recommended range increases the probability of scale formation (deposition), so it is buffered with carbonate (CO32-) and bicarbonate ions (HCO3-). Titration of the cooling water to pH 4.5 gives the so-called "M-Alkalinity" (methyl orange alkalinity), a measure of total alkalinity. Below this pH, there is no more alkalinity present, only free acid (H+), carbonic acid (H2CO3), and CO2.
- AN-PAN-1058Online determination of lithium in brine streams with ion chromatography
Lithium is a soft alkali metal that is typically obtained from salt lake brines. Lithium is used for many applications, but especially for production of lithium-ion batteries in electric cars, mobile phones, and more. This Process Application Note presents a method to monitor lithium as well as other cations in brines by online process ion chromatography (IC), a multiparameter analytical technique that can measure ionic analytes in a wide range of concentrations.
- AN-PAN-1064Monitoring complexing agents in galvanic baths inline with Raman spectroscopy
Accurate analysis of complexing agents in galvanic baths is possible with inline Raman spectroscopy. This Application Note shows an example using a 2060 Raman Analyzer.
- AN-BAT-012Determination of the Lithium Ion Transference Number of a Battery Electrolyte by VLF-EIS
In this application note, we demonstrate how to determine the lithium ion transference number of a commercial liquid binary lithium ion battery electrolyte, based on the very-low-frequency electrochemical impedance spectroscopy (VLF-EIS) method.
- AN-COR-017Coulometric Reduction as per ASTM B825
The ASTM B825 is used to determine the corrosion and tarnish film on metal surfaces. This is achieved by using the so-called cathodic reduction method. With the help of a Metrohm Autolab PGSTAT302N and a Metrohm Autolab 1 L corrosion cell, a procedure to replicate the ASTM B825 is shown.
- AN-EC-003Ohmic Drop Part 1 – Basic Principles
This application explains ohmic iR drop in electrochemical cells, its causes, and strategies to minimize its impact for accurate and reliable potential measurements.
- AN-FC-001Fuel cells part 1 – what is a fuel cell?
A fuel cell is an electrochemical energy conversion device that produces electricity and heat by electrochemically combining a fuel (typically hydrogen) and an oxidant (typically oxygen). The higher efficiency also results in much lower carbon dioxide emissions and negligible amounts of SOx and NOx (when reformed fuel is used) compared with fossil fuel-based technologies for the same power output.
- AN-FC-005Impedance measurements on fuel cells and fuel cell stacks at high currents: Part 2 – Autolab in combination with an electronic load
The use of impedance measurements on fuel cells under load makes it possible to study the influence of the different fuel cell elements on the behavior and (if detectable) on the ageing of the fuel cell. To perform high current density measurements, the Autolab systems can be connected to a third party electronic load. This extends the measurable range of the instrument by several current decades.
- AN-PV-001Dye-Sensitized Solar Cells – i-V and Power Plots with the Autolab Optical Bench
A solar cell or photovoltaic cell is a device that converts light energy into electrical energy. Dye-sensitized solar cells (DSC) are currently the subject of intense research in the context of renewable energies as a low-cost photovoltaic (PV) device. Electricity generated from a PV produces zero emissions, is modular, and can produce energy anywhere the sun shines. The standard characterization technique of a PV device consists in the determination of the DC current-voltage curves under different incident light intensities.
- AN-BAT-004Potentiostatic intermittent titration technique (PITT)
During charge and discharge of a Li-ion battery, lithium ions are transported from one electrode through the electrolyte to the other electrode. Knowing the chemical diffusion coefficient of electrode materials is crucial. The potentiostatic intermittent titration technique (PITT) is one of the most used techniques to retrieve insights on the diffusion coefficient of the electrode active materials.
- AN-COR-011ASTM G100: Cyclic Galvanostaircase Polarization
The ASTM standard G100 is an electrochemical method to test localized corrosion of aluminum 3003-H14 and other alloys. A cyclic galvanostatic staircase polarization (galvanostaircase) is composed of an upward and a downward scan. The potential values at the end of each step are collected and linearly fitted, and the potential values at zero current are found.
- AN-EC-010In-temperature ionic conductivity measurements with the Autolab Microcell HC setup
To improve the performance of electrochemical energy storage devices like batteries and supercapacitors, one can focus on enhancing the ion conductivity (ƠDC) of the electrolyte. It is a common method for obtaining ƠDC values of different electrolyte systems, to carry out electrochemical impedance spectroscopy (EIS) experiments, at different temperatures, in a 2-electrode setup.
- AN-EIS-005Electrochemical Impedance Spectroscopy (EIS) Part 5 – Parameter Estimation
In the application note AN-EIS-004 on equivalent circuit models, an overview of the different circuit elements that are used to build an equivalent circuit model was given. After identifying a suitable model for the system under investigation, the next step in the data analysis is estimation of the model parameters. This is done by the non-linear regression of the model to the data. Most impedance systems come with a data-fitting program. In this application note, the way NOVA is uses to fit the data is shown.
- AN-EIS-001Electrochemical impedance Spectroscopy (EIS) Part 1 – Basic Principles
Electrochemical impedance spectroscopy (EIS) is a widely used multidisciplinary technique for characterizing the behavior of complex electrochemical systems. EIS is employed in the study of a range of complex systems including batteries, catalysis, and corrosion processes. This Application Note focuses on the basic principles of EIS measurements.
- AN-BAT-006Determination of the MacMullin number
The main components of a battery are the positive and negative electrodes, together with the electrolyte, which provides only the ionic conductivity. The most common electrolytes are in the liquid state. Therefore, a separator is needed to provide a physical separation between the electrodes. The separator is soaked with electrolyte. The MacMullin number is a parameter used to determine the quality of a separator, in terms of ionic conductivity, when soaked with an electrolyte. The MacMullin number can be calculated, using the results of data fitting of two EIS experiments and the geometric factors of the measurement cells. In this application note, a commercial electrolyte is employed, together with a porous filter, used as a separator.
- AN-EC-027Measuring the potential at the counter electrode with VIONIC powered by INTELLO
Many different configurations are made possible when using two-, three-, or four-electrode cell setups in research. Depending on the experimental requirements, one setup may be preferred over another. Therefore, the proper electrode arrangements for these three situations are defined in this Application Note. As an example, the potential at the counter electrode is measured during the platinum oxidation in acidic media, with the second sense (S2) of VIONIC powered by INTELLO. Since dissolved Pt in solution could bias the results, it is important to be able to monitor the potential of the counter electrode.
- AN-BAT-015Differential capacity analysis (DCA) for battery research with INTELLO
This Application Note discusses differential capacity analysis (DCA) and its impact on enhancing battery performance, with a focus on using the INTELLO platform.
- AN-T-027Alkalinity of amine-containing gas washing solutions
Determination of the alkalinity of gas washing solutions containing alkanolamines by potentiometric titration with sulfuric acid using the combined glass electrode.
- AN-T-218Analysis of Li-ion battery cathode materials made from Co, Ni, and Mn
The lithium-ion battery market is continuously growing due to the tremendous demand for battery powered consumer products. So-called «NCMs», a mixture of nickel, cobalt, and manganese oxides, have been gathering interest as cathode materials, replacing traditional compounds like cobalt oxides.Quality analysis of the post-sintered materials or recycled batteries can be performed by titration, as demonstrated in this Application Note. A fully automated analysis of the corresponding metals can be performed with OMNIS and its pipetting equipment.
- WP-052A Guide to Li-ion Battery Research and Development
The commercialization of Li-ion batteries in 1991 was the culmination of in-depth R&D conducted by scientists and engineers around the globe over the preceding few decades. Further development of Li-ion batteries and alternative rechargeable batteries has continued until today. As the world is rapidly moving towards a new era defined by green technologies, more practical and accurate R&D is required in order to meet the increasing demands for energy storage systems, specifically from the automotive industry. This white paper presents the basics of the Li-ion battery technology and guides the reader through the relevant techniques and terminologies in Li-ion battery research.
- WP-083Hyphenated electrochemical-Raman spectroscopy: Another dimension for your research
White paper about Raman spectroscopy and electrochemistry and their combination (electrochemical Raman).
- WP-089Water content determination in ketones using Hydranal™ NEXTGEN FA reagents
With Hydranal™ NEXTGEN FA reagents, the water content in ketones can be determined quickly and reliably. Compared to other existing KF reagents for ketones on the market, the side reactions are measurably better suppressed.
- 8.000.6072Trace-level determination of cations in the secondary circuit of a PWR-type nuclear power plant using ion chromatography after inline sample preparation
The presented IC system with inline sample preparation allows the determination of traces of lithium and sodium (ppt) in the presence of ppm quantities of ammonium and ethanolamine.
- TA-019Simultaneous determination of mineral acids, fluoride and silicate in etching baths.
This article describes an ion chromatography method for the simultaneous determination of HF, HNO3, H2SO4, short-chain organic acids, and of H2SiF6 in acid texturing baths.
- 410000059-BCharacterization of carbon materials with Raman spectroscopy
Raman spectroscopy is a valuable tool for the characterization of carbon nanomaterials due to its selectivity, speed, and ability to measure samples nondestructively. Carbon materials typically have simple Raman spectra, but they contain a wealth of information about internal microcrystalline structures in peak position, shape, and relative intensity.
- AN-H-114Determination of sulfuric acid, nitric acid, and hydrofluoric acid in etch solutions
Two separate titration sequences are required to analyze the mixture:- titration of the HF content with Al(NO3)3 (the «elpasolite» reaction)- titration of the H2SO4 with BaCl2 followed by titration with NaOH to determine the «total acids» contentThe HF, H2SO4, and «total acids» contents are converted to a HNO3 equivalent, with the HNO3 content found by subtracting the HF and H2SO4 from the «total acids» content.
- AN-P-058Amines in gas scrubber solutions using IC and pulsed amperometric detection
Scrubber solutions for scrubbing flue gas often contain amines for absorbing acid gases, e.g., sulfur dioxide (SO2). 1-(2-hydroxyethyl)piperazine and 1,4- Bis(2-hydroxyethyl)piperazine from gas scrubber solutions are separated in the Metrosep Carb 2 - 150/4.0 column and then determined using pulsed amperometric detection.