Filtro de Aplicações
- AB-036Half wave potentials of metal ions for the determination by polarography
In the following tables, the half-wave potentials or peak potentials of 90 metal ions are listed. The half-wave potentials (listed in volts) are measured at the dropping mercury electrode (DME) at 25 °C unless indicated otherwise.
- AB-066Determinação potenciométrica e termométrica de ácido bórico
O ácido bórico é usado em muitos circuitos primários de usinas nucleares, em banhos de níquel e na produção de vidros ópticos. Além disso, compostos de boro são encontrados em detergentes em pó e fertilizantes. Este boletim descreve a determinação potenciométrica e termométrica de ácido bórico. A determinação também abrange outros compostos de boro, quando é aplicada digestão ácida.
- AB-089Potentiometric analysis of anodizing baths
This Bulletin describes potentiometric titration methods for checking sulfuric acid and chromic acid anodizing baths. In addition to the main components aluminum, sulfuric acid, and chromic acid, chloride, oxalic acid, and sulfate are determined.
- AB-130Chloride titrations with potentiometric indication
Besides acid-base titrations, the titrimetric determination of chloride is one of the most frequently used titrimetric methods of analysis. It is employed more or less frequently in practically every laboratory. This Bulletin shows you how to determine chloride in a wide range of concentrations using automatic titrators. Silver nitrate is normally used as titrant (for environmental reasons one should refrain from using mercury nitrate). The titrant concentration depends on the chloride content of the sample to be analyzed. It is crucial to choose the correct electrode for samples with low chloride contents.
- AB-132Polarographic determination of molybdenum in strongly ferruginous materials
A method is described in this Bulletin that allows molybdenum to be determined in steel and other materials containing a high iron concentration. Mo(VI) is determined at the dropping mercury electrode by catalytic polarography. The determination limit is approx. 10 μg/L Mo(VI).
- AB-176Determination of lead and tin by anodic stripping voltammetry
In most electrolytes the peak potentials of lead and tin are so close together, that a voltammetric determination is impossible. Difficulties occur especially if one of the metals is present in excess. Method 1 describes the determination of Pb and Sn. Anodic stripping voltammetry (ASV) is used under addition of cetyltrimethylammonium bromide. This method is used when: • one is mainly interested in Pb • Pb is in excess • Sn/Pb ratio is not higher than 200:1 According to method 1, Sn and Pb can be determined simultaneously if the difference in the concentrations is not too high and Cd is absent. Method 2 is applied when traces of Sn and Pb are found or interfering TI and/or Cd ions are present. This method also uses DPASV in an oxalate buffer with methylene blue addition.
- AB-192Determination of thiourea in the lower mg/L and in the µg/L range by polarography and cathodic stripping voltammetry
Thiourea forms highly insoluble compounds with mercury. The resulting anodic waves are used for the polarographic determination of thiourea. For the analysis of very small quantities (µg/L), cathodic stripping voltammetry (CSV) is used. Differential Pulse measuring mode is used in both cases.
- AB-195Titrimetric determination of free boric acid and tetrafluoroboric acid in nickel plating baths
This Bulletin describes the simultaneous potentiometric titration of free boric acid and free tetrafluoroboric acid in nickel plating baths. After addition of mannitol, the formed mannitol complexes are titrated with sodium hydroxide solution. The determination is carried out directly in the plating bath sample; nickel and other metal ions do not interfere.
- AB-196Determination of formaldehyde by polarography
Formaldehyde can be determined reductively at the DME. Depending on the sample composition it may be possible to determine the formaldehyde directly in the sample. If interferences occur then sample preparation may be necessary, e.g. absorption, extraction, or distillation.Two methods are described. In the first method formaldehyde is reduced directly in alkaline solution. Higher concentrations of alkaline or alkaline earth metals interfere. In such cases the second method can be applied. Formaldehyde is derivatized with hydrazine forming the hydrazone, which can be measured polarographically in acidic solution.
- AN-H-023Determinação de níquel por titulação de dimetilglioxima
Determinação de níquel na ausência de cobalto e outras interferências.