Aplikacje
- EB-001Near-infrared spectroscopy for the analysis of petrochemicals
Improve petrochemical quality control with NIRS. Fast, cost-effective, and no sample prep needed. Learn more in our eBook.
- EB-002NIR spectroscopy: The efficiency boost for QC labs
Enhance quality control in material and chemical production with NIRS. Fast, cost-effective, and no sample prep needed. Learn more in our eBook.
- EB-004Near-infrared and Raman spectroscopy for polymer analysis: An introduction
This e-book explains how Raman and near-infrared (NIR) spectroscopy enable rapid, nondestructive polymer analysis, ensuring high quality while reducing costs and waste.
- WP-020Near-infrared spectroscopy: Technology comparison
This White Paper compares the two most commonly used technologies in near-infrared spectroscopy: Predispersive monochromator technology and Fourier transformation technology. In addition to measurement speeds and captured spectral ranges, the noise levels and the signal-noise ratios associated with them are also contrasted with one another.
- WP-053Determination of Acid Number (AN) with Titration and NIR Spectroscopy
The acid number (AN) is a measure for the quality of oils and their potential to enhance corrosion. When analyzing fresh, unused oils, the AN is used to ensure the specified quality from the manufacturer, whereas for used oils the AN is determined to observe its increase until a critical level is reached. Although it is generally assumed that the AN correlates to the corrosive potential of the oil, this is not exactly correct, as it is the change of the AN value which indicates this issue. Therefore it is necessary to determine the AN on a regular basis.Several standards already exist to determine AN via titration methods, however it is also possible to measure this parameter via spectroscopic (NIRS) methodology. No matter which technique you choose, Metrohm has you covered with high-performance instruments suitable for these published norms.
- WP-011Sustainable Testing of Paint and Coatings
More strict regulations paired with more complex products have increased testing complexity in the paint and coating industry. Therefore, producers ask for more powerful, safe and sustainable analytical methods. Testing by Vis-NIR spectroscopy is a sustainable and costefficient alternative to many wet chemical methods. This white paper describes how Vis-NIR spectroscopy improves testing procedures for various analyses during the formulation and production of paint and coatings in an economic and ecological way.Key words: testing, sustainable, VOC, paint, coating, binders, resins, additives, pigments, solvents
- WP-030Analytical method transfer
Near-infrared spectroscopy (NIRS) is a widely used analytical technique for qualitative and quantitative analysis of various products in research and industrial applications. Because of different reasons it might be necessary to transfer analytical methods from one NIR analyzer to another one. This white paper summarizes the workflow of such method transfer.
- WP-032Creating Custom Libraries Detection of Binary Explosives with Mira DS
Detection of threatening materials requires robust and sophisticated instruments capable of safe, instantaneous field-analysis of unknowns. In an environment where there is an ever-evolving threat of explosives made from commonlyavailable chemicals, explosive libraries must be customized constantly to include newly targeted materials. Mira DS from Metrohm Raman is the perfect solution for detection of explosives in the field. This handheld Raman instrument is equipped with sophisticated analysis algorithms and a suite of safety features for first responders who need the identity of a potential hazard... NOW! Mira DS and its software can be customized to respond to emerging hazards: this note describes procedures for creating custom libraries of binary explosive precursors to be used in library comparison and mixture matching routines on Mira DS. With these tools, unknown substances can be identified with color-coded warnings for fast action in critical situations.
- WP-040Benefits of Client-Server Systems for Quality Control with Vis-NIR Spectroscopy
Analyzer systems monitoring product quality can offer substantial advantages when organized in a client-server network compared to the more traditional local installation. This white paper presents different client-server setups and their benefits. Security aspects that need to be considered are discussed based on the example of the client-server Vis-NIR (visible near-infrared) spectroscopy software Vision Air, widely used for quality control in the chemical, polymer, pharmaceutical, and petrochemical industry.
- WP-031Lifecycle of multivariate methods according to United States Pharmacopeia Chapter <1039> Chemometrics
Chemometrics is a powerful tool widely used for method development in the pharmaceutical industry. This whitepaper describes the lifecycle of multivariate models and summarizes the workflow of the development of chemometrical models according to the new USP chapter <1039>.
- WP-047Optimizing the chlor-alkali process through online chemical analysis
This White Paper explores the critical role of advanced online and inline process analysis in brine chlorine operations, emphasizing their advantages over traditional methods.
- 410000016-AQuantification of Urea in Ethanol by Raman Spectroscopy
Urea in widely employed as a nitrogen-release fertilizer with more than 90 % of urea production destined for agricultural applications. Urea is also known to form complexes with fatty acids, which have been employed for separation of complex mixtures and purification processes. In this application note, we present the quantification of the concentration of urea in ethanol by Raman Spectroscopy and show how this method can be employed for determining the percentage of urea in a solid inclusion compound with stearic acid.
- 410000003-APortable Raman Spectroscopy for the Study of Polymorphs and Monitoring Polymorphic Transitions
Raman spectroscopy is used for material characterization by analyzing molecular or crystal symmetrical vibrations and rotations that are excited by a laser, and exhibit vibrations specific to the molecular bonds and crystal arrangements in the molecules. Raman technology is a valuable tool in distinguishing different polymorphs. Examples of portable Raman spectroscopy for identification of polymorphs and in monitoring the polymorphic transiton of citric acid and its hydrated form are presented.
- 410000014-BRaman Spectroscopy as a Tool for Process Analytical Technology
This article demonstrates the utility of portable Raman spectroscopy as a versatile tool for process analytical technology (PAT) for raw material identification, in-situ monitoring of reactions in developing active pharmaceutical ingredients (APIs), and for real-time process monitoring. Raw material identification is done for verification of starting materials as required by PIC/S and cGMP, and can be readily done with handheld Raman. Portable Raman systems allow users to make measurements to bring process understanding and also provide proof of concept for the Raman measurements to be implemented in pilot plants or large-scale production sites. For known reactions which are repetitively performed or for continuous online process monitoring of reactions, Raman provides a convenient solution for process understanding and the basis for process control.
- 410000017-ARaman for See Through Material Identification Application Note
A new Raman system design is presented that expands the applicability of Raman to See Through diffusely scattering media such as opaque packaging materials, as well as to measure the Raman spectrum and identify thermolabile, photolabile, or heterogeneous samples.
- 410000035-AB&W Tek TacticID for Narcotics Identification
Forensics testing of samples encountered by law enforcement and customs agents is based on analytical techniques that are now being miniaturized and simplified and are making their way into field instrumentation. Field testing with Raman spectroscopy allows users to conduct reliable measurements at the point of arrest, reducing the burden on crime labs and accelerating the prosecution process.
- 410000037-AIn-situ Monitoring of a Moisture-Induced Polymorphic Transition using Raman Spectroscopy and Gravimetric Vapor Sorption
The combination of Raman spectroscopy and vapor sorption techniques provides a comprehensive understanding of vapor-solid interactions of pharmaceutical materials as it relates to the structural properties.This paper investigates the in-situ monitoring of a moisture-induced polymorphic transformation (D-mannitol from delta to beta form) using a combined Raman-vapor sorption technique.
- 410000042-AProper care and handling of fiber-optic cables
Fiber-optic cables are marvels of innovation for modern spectroscopic instrumentation. The advantages offered by fiber optical cable-based sampling include great flexibility for enabling measurements at various sample sites, ease of use, and flexibility for easy transportation. With this freedom however comes increased responsibility for care and maintenance of the associated fiber accessories to ensure the measurement quality and fiber durability.
- 410000049-ANanoRam®-1064 Fast Facts: Botanical Verification
Botanicals are derived from plant materials and used for their medicinal and therapeutic properties in the nutraceuticals market. They are not as heavily regulated by the U.S. Food and Drug Administration (FDA) like the pharmaceuticals drug market, but they are required to follow Good Manufacturing Practice (GMP Requirements).The NanoRam®-1064 is an asset for pharmaceutical identity testing, minimizing fluorescence generated by typical handheld Raman systems with 785 nm lasers. As such, the NanoRam®-1064 is used here to identify botanicals that would normally fluoresce with a 785 nm laser.
- 410000056-ACounterfeit Adderall Pills Identification with TacticID Mobile
In this case study, a suspected counterfeit Adderall pill was measured directly with a TacticID Mobile using a point-and-shoot adapter. The spectra of the suspected couterfeit pill was found to contain cellulose and caffeine, but not the active ingredient. The TacticiD Mobile with 1064-nm laser excitation provides fluorescence suppression, giving those on the front lines a tool in the fight against dangerous counterfeit drugs.
- 410000029See-through ID with Raman technology
Metrohm’s ST Raman technology enables fast, contactless identification of substances through opaque packaging, expanding safe, field-ready use of Raman spectroscopy.
- AB-358Analysis of residual moisture in a lyophilized pharmaceutical product by near-infrared spectroscopy (NIRS)
This Application Bulletin describes the method of near-infrared spectroscopy in diffuse reflection for the purpose of determining residual moisture in a lyophilized pharmaceutical product. Numerous sample vials containing freeze-dried pharmaceuticals were spiked with varying amounts of water for calibration purposes. The resulting differences in the absorption wavelengths of the OH-oscillation were correlated with the water content determined by Karl Fischer titration using the algorithm of multiple linear regression (MLR).
- AB-412Pulp and paper analyses using near-infrared spectroscopy
The present Application Bulletin contains NIR applications for the determination of important parameters for pulp and paper quality analysis. Each application describes the instrument that was originally used for the analysis, as well as the system recommended for the analysis and the results that were achieved thereby.
- AN-NIR-046Qualification of droplet morphology in hair conditioner by Vis-NIR spectroscopy
Vis-NIR spectroscopy is used to determine the droplet morphology in hair conditioner. This Application Note shows that near-infrared (NIR) spectroscopy can be used to distinguish between unprocessed and processed hair conditioner and to qualify quality parameters such as the droplet size.
- AN-NIR-063Content uniformity test of pharmaceutical solid dosage forms using NIR spectroscopy
Uniformity of dosage units must be tested for QC purposes in the pharma industry. NIRS gives results in seconds along with the quantification of APIs and excipients.
- AN-NIR-016Near-infrared spectroscopy for monitoring a single-pot granulator
This Application Note describes the utilization possibilities of a new sensor design that permits, in combination with an NIRS XDS Process Analyzer, the determination of solvent residues in a High-Shear Granulator during the drying phase. This system configuration reduces the scattering of the density distribution of the powder samples so that it is possible, directly in the process, to model the water and solvent content precisely.
- AN-NIR-026Dye, diethylene glycol, water and surfactant content in ink
Ink is a complex mixture that, along with numerous additives, is comprised mainly of solvent, dye, water and surfactant. Vis-NIR spectroscopy is outstandingly suitable for providing rapid and reliable determinations of constituents in the context of quality controls. This Application Note describes the determination of diethylene glycol (DEG), water, dye and surfactant.
- AN-NIR-032Determination of the cotton linter and pulp content in cellulose
This Application Note shows the determination of the ratio of cotton linter to pulp in cellulose samples with Vis-NIR spectroscopy. This linter-pulp ratio is an important characteristic in the paper industry which, unlike with elaborate wet-chemistry methods, can be determined quickly and conveniently with Vis-NIR spectroscopy.
- AN-NIR-038Rapid determination of biochemical methane potential with NIR
This Application Note shows that the NIR solution based on the combination of Metrohm NIRS DS2500 analyzer and "Ondalys Flash BMP®" prediction model enable a time-saving and efficient determination of the BMP of various substrates that are used with anaerobic fermentation during biogas production. In contrast to the standard procedure, the results become available within just a few minutes. It is for that reason that this solution offers an alternative option for the optimization of anaerobic fermentation and thus the methane yields.
- AN-NIR-049Quantification of TAED, PCS and protease enzyme in detergents using Near-infrared spectroscopy
Visible near-infrared (Vis-NIR) spectroscopy can be used as a fast and accurate analytical method for the quantification of different analytes and active ingredients in detergents, such as tetraacetylethylendiamin (TAED), sodium percarbonate (PCS), and enzymes. This Application Note shows how NIRS can be used for multi-constituent analyses in detergents in a single measurement.
- AN-NIR-057Quantification of Baicalin content in scutuellaria baicalensis powder (herbal supplements) by Vis-NIRS
This Application Note shows that visible near-infrared spectroscopy (Vis-NIRS) can be used for the quantification of Baicalin content in herbal supplements. Vis-NIRS is a good alternative to the conventional lab method (HPLC) and can save both cost and time.
- AN-NIR-002Nondestructive, single tablet analysis using the NIRS XDS RapidContent Analyzer
This Application Note shows the potential of NIRS as a rapid (< 30 s) and nondestructive screening tool for solid dosage forms (e.g. tablets). NIRS requires neither sample preparation nor solvent use. Interferences that derive from scattering are minimized by converting to second derivative spectra.
- AN-NIR-010Process monitoring in a butyl acetate production stream using near-infrared spectroscopy
This Application Note describes an NIR method for monitoring the esterification process in butyl acetate production. The developed NIR method shows excellent analytical performance equivalent to that obtainable with more time-consuming GC methods.
- AN-NIR-031Purity, degree of substitution and water content of carboxymethyl celluloses
This Application Note shows how purity, degree of substitution and water content of carboxymethyl celluloses (CMC) can be determined conveniently and rapidly in a single measurement with Vis-NIR spectroscopy.
- AN-NIR-039Multi-parameter analysis of wood pulp using Vis-NIR spectroscopy
In this Application Note, Vis-NIR spectroscopy (Vis-NIRS) is used to determine six wood pulp properties in a single measurement: kappa number, applied density, freeness, breaking strength, buckling strength and tensile strength.
- AN-NIR-043Analytical data transfer between a Fourier transform and a dispersive NIR instrument
This Application Note demonstrates the data transfer from a Fourier transform to a dispersive NIR instrument, using quality control of lubricating oils as an example application. It is shown that FT-NIR instruments can be replaced by dispersive ones without time-consuming sample remeasurement and subsequent method development.
- AN-NIR-069Determination of sodium dodecyl sulfate in toothpaste using Vis-NIR spectroscopy
Rapid quality control for toothpaste is achieved by Metrohm`s Vis-NIR analyzers. Vis-NIR technology offers significant advantages compared to standard reference analysis. It is a cost effective and safe method because no hazardous chemicals are used.
- AN-NIR-073Determination of water activity in tablets with the OMNIS NIR Analyzer
Water activity is an important parameter to measure for non-sterile pharmaceutical quality and stability. The OMNIS NIR Analyzer provides this data within seconds.
- AN-NIR-050Quantification of active ingredients in shampoo using near-infrared spectroscopy (NIR)
Near-infrared spectroscopy (NIRS) was used in a preliminary study as a fast and accurate method for the quantification of different preservatives and active ingredients in liquid shampoo. This Application Note shows how this analytical method allows the simultaneous determination of several constituents in shampoo in a single measurement.
- AN-NIR-067Simultaneous determination of multiple quality parameters in epoxy resins using Vis-NIR spectroscopy
This Application Note demonstrates the feasibility of Vis-NIRS for the simultaneous determination of multiple chemical and physical parameters in epoxy resins. Vis-NIRS is a fast alternative to conventional lab methods: it accelerates raw material inspection, process monitoring, and final product control.
- AN-NIR-022Quality Control of Gasoline
In recent years, there has been a significant push to reduce the environmental impacts of fuels through improvements to fuel quality. The determination of key quality parameters of gasoline, namely research octane number (RON, ASTM D2699-19), motor octane number (MON, ASTM D2700-19), anti knock index (AKI), aromatic content (ASTM D5769-15), and density, conventionally requires several different analytical methods, which are laborious and need trained personnel. This application note demonstrates that the XDS RapidLiquid Analyzer, operating in the visible and near-infrared spectral region (Vis-NIR), provides a cost-efficient and fast solution for the multiparameter analysis of gasoline.
- AN-NIR-068Quality Control of Isocyanates
Determination of isocyanates (ASTM D7252) is a challenging procedure due to the reactivity of these organic species with atmospheric moisture, as well as their toxicity. Furthermore, HPLC analysis typically used for this kind of analysis involves sample preparation steps and chemicals, with each measurement taking up to 20 minutes to complete. This application note demonstrates that the XDS RapidLiquid Analyzer operating in the visible and near infrared spectral region (Vis-NIR) provides a chemical-free and fast solution (under one minute) for determination of isocyanate content.
- AN-NIR-060Quality Control of Polyamides
Functional group and viscosity analysis (ASTM D789) of polyamides can be a lengthy and challenging process due to the sample’s limited solubility. This application note demonstrates that the DS2500 Solid Analyzer operating in the visible and near-infrared spectral region (Vis-NIR) provides a cost-efficient and fast solution for a simultaneous determination of the intrinsic viscosity as well as the amine, carboxylic, and moisture content in polyamides. With no sample preparation or chemicals needed, Vis-NIR spectroscopy allows for the analysis of polyamides in less than a minute.
- AN-NIR-074Quality control of liquid laundry detergents by NIR spectroscopy
This Application Note shows how NIRS is used for the multiparameter analysis of dry matter, pH value, viscosity, and surfactant content in liquid laundry detergent.
- AN-NIR-077Moisture analysis in caprolactam
Caprolactam is an important polymer used for the production of Nylon 6, which is the base material for industrial fibers. Due to its commercial significance, many different synthesis methods have been developed over the years. Caprolactam is hygroscopic and water soluble, therefore it is important to have a reliable analysis technique for water determination. Analyzing the water content by conventional methods requires each sample to be weighed, dissolved, heated, and titrated. Compared to the primary method, near-infrared spectroscopy (NIRS) offers unique advantages: it generates reliable results within seconds, but it does not need any sample preparation nor does it create chemical waste.
- AN-NIR-089Quality Control of Laminates
In the semiconductor industry, thermoset resins combined with fabric or paper are used as an intermediate layer between substrates of printed circuit boards (PCB). These polymer-based sheets (laminates) are chosen depending on thickness and their thermomechanical and electrical characteristics. Near infrared spectroscopy (NIRS) is a fast, non-destructive and easy-to-use analytical method which allows the measurement of multiple key quality parameters in less than a minute. The following Application Note describes the determination of the transition time of PCB laminates by NIRS, a parameter correlating with the thickness, glass transition temperature, and tensile strength of the material.
- AN-NIR-083Quality Control of HDPE, LDPE, and PP
Identification of individual polymers with FT-IR spectroscopy can be a challenge due to sample inhomogeneity especially when larger sample sizes need to be analyzed. This application note demonstrates that the DS2500 Solid Analyzer operating in the visible and near infrared spectral region (Vis-NIR) provides a reliable and fast solution for the identification of high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP). With no sample preparation or chemicals needed, Vis-NIR spectroscopy allows the identification of larger inhomogeneous sample amounts in less than a minute.
- AN-NIR-081Quality Control of Polyethylene
Determination of the density of polyethylene (PE) (ASTM D792) is normally a challenging procedure due to reproducibility difficulties. Measurement via FT-IR can be problematic when larger sample sizes must be analyzed due to sample inhomogeneity. This application note demonstrates that the DS2500 Solid Analyzer operating in the visible and near-infrared spectral region (Vis-NIR) provides a reliable and fast solution for determination of the density of PE. With no sample preparation or chemicals needed, Vis-NIR spectroscopy allows the analysis of larger, inhomogeneous sample sizes of PE in less than a minute.
- AN-NIR-091Quality Control of Mixed Acetic, Hydrofluoric, and Nitric Acids
This application note discusses an alternative near-infrared (NIR) spectroscopy method that can reliably determine all parameters within a minute, even in complex acid mixtures.
- AN-NIR-095Quality Control of Hand Sanitizers
This application note presents near-infrared spectroscopy (NIRS) for the rapid and reliable simultaneous quantification of ethanol, glycerol, hydrogen peroxide, and water content in hand sanitizer formulations.