응용 분야 및 기법
- 8.000.6016Advantages of multidimensional ion chromatography for trace analysis
The analytical challenge treated in the present work consists in detecting trace concentrations (ppb) of bromide in the presence of a strong chloride matrix. This problem was overcome by separating the bromide ions from the main fraction of the early eluting chloride matrix (several g/L) by applying two sequential chromatographic separations on the same column. After the first separation, the main fraction of the interfering chloride matrix is flushed to waste, while the later eluting anions are diverted to an anion-retaining preconcentration column. After elution in counter flow, the bromide ions are efficiently separated from the marginal chloride residues. The four-point calibration curves for bromide and sulfate are linear in the range of 10…100 µg/L and 200…800 µg/L and yield correlation coefficients of 0.99988 and 0.99953 respectively. For the method shown here, a second injection valve and a preconcentration column are the only additional devices needed to master this demanding separation problem.
- AB-036Half wave potentials of metal ions for the determination by polarography
In the following tables, the half-wave potentials or peak potentials of 90 metal ions are listed. The half-wave potentials (listed in volts) are measured at the dropping mercury electrode (DME) at 25 °C unless indicated otherwise.
- AB-096Determination of mercury at the rotating gold electrode by anodic stripping voltammetry
This Application Bulletin describes the determination of mercury by anodic stripping voltammetry (ASV) at the rotating gold electrode. With a deposition time of 90 s, the calibration curve is linear from 0.4 to 15 μg/L; the limit of quantification is 0.4 μg/L.The method has primarily been drawn up for investigating water samples. After appropriate digestion, the determination of mercury is possible even in samples with a high load of organic substances (wastewater, food and semi-luxuries, biological fluids, pharmaceuticals).
- AB-430Determination of uranium by adsorptive stripping voltammetry according to DIN 38406-17
This Application Bulletin describes the methods for the determination of uranium by adsorptive stripping voltammetry (AdSV) according to DIN 38406 part 17. The method is suitable for the analysis of ground, drinking, sea, surface and cooling waters, in which the concentration of uranium is of importance. The methods can, of course, also be used for the trace analysis in other matrices.Uranium is determined as chloranilic acid complex. The limit of detection in samples with low chloride concentration is about 50 ng/L and in seawater about 1 µg/L. Matrices with high chloride content can only be analyzed after reduction of the chloride concentration by means of a sulfate-loaded ion exchanger.
- AB-416Determination of arsenic in water with the scTRACE Gold
This Application Bulletin describes the determination of arsenic in water samples by anodic stripping voltammetry using the scTRACE Gold sensor. This method makes it possible to distinguish between As(total) and As(III). With a deposition time of 60 s, the limit of detection for As(total) is 0.9 µg/L, for As(III) it is 0.3 µg/L.
- AN-C-143Ammonia in addition to standard cations in maritime pore water
Maritime pore water contains sodium in the percentage range. The analysis of ammonia in this kind of sample requires a high column capacity and an exceptionally good separation of sodium and ammonia. These requirements are completely fulfilled by a 2 µL injection to the high-capacity Metrosep C 6 - 250/4.0 column.
- AN-S-280Ten anions in an offshore effluent
Determination of acetate, chloride, nitrite, bromide, nitrate, phosphate, sulfate, oxalate, fumarate, and molybdate using anion chromatography with conductivity detection after chemical suppression.
- AN-V-228Thallium in drinking water
Presence of thallium in surface water is an indicator of industrial effluents and poses a serious health hazard if imbibed. Monitoring of thallium concentration can easily be done with anodic stripping voltammetry on the silver film modified scTRACE Gold. This non-toxic method allows the determination of thallium concentrations between 10–250 µg/L and can be carried out with the 946 Portable VA Analyzer.
- AN-V-222Iron determination in drinking water
The presence of iron in drinking water can lead to an unpleasant taste, stains, or even growth of «iron bacteria» that can clog plumbing and cause an offensive odor. Over a longer period, the formation of insoluble iron deposits is problematic in many industrial and agricultural applications. To avoid these problems, the U.S. Environmental Protection Agency (EPA) defines the Secondary Maximum Contaminant Level (SMCL) for water treatment and processing plants as 0.3 mg/L Fe in drinking water.The voltammetric determination of the iron triethanolamine complex on the non-toxic Bi drop electrode allows both the detection at very low levels (limit of detection of 0.005 mg/L) and measurements in a wide range of concentrations up to 0.5 mg/L.
- AN-V-226Zinc in drinking water with a glassy carbon electrode
No health-based guideline value exists for zinc. However, to maintain good quality municipal drinking water, the United States Environmental Protection Agency (US-EPA) set a maximum concentration of 5 mg/L as the limit value. Typical concentrations in surface and ground waters are between 10–40 μg/L Zn, with values up to 1 mg/L in tap water. Anodic stripping voltammetry (ASV) on the ex-situ mercury film modified glassy carbon electrode provides a less complex alternative to atomic absorption spectroscopy (AAS) for zinc determination in drinking water.