응용 분야 및 기법
- 8.000.6015Effect of eluent composition and column temperature on IC column retention times
This work was carried out with a Metrosep C 2 - 150 separation column, the following eluent parameters being investigated: nitric, tartaric, citric and oxalic acid concentration and concentration of the complexing anion of dipicolinic acid (DPA). The aim was to determine the effect of these parameters plus that of the column temperature on the retention times of alkali metals, alkaline earth metals, ammonium and amines using ion exchange chromatography with non-suppressed conductivity detection. Due to similar affinities for the ion exchange column, transition metals are difficult to separate with the classical nitric, tartaric, citric and oxalic acid eluents. Partial complexation with the dipicolinate ligand significantly shortens the retention times and improves the separation efficiency. However, too strong complexation results in a rapid passage through the column and thus in a complete loss of separation. Apart from a change in the elution order of magnesium and calcium at high DPA concentrations, other non-amine cations are only slightly affected by the eluent composition. Irrespective of the tartaric acid and nitric acid concentration in the eluent, an increase in column temperature shortens the retention times and slightly improves the peak symmetries of organic amine cations, particularly in the case of the trimethylamine cation. In contrast, an increase in column temperature in the presence of DPA concentrations exceeding 0.02 mmol/L increases the retention time of the transition metals. Depending on the separation problem, variation of the pH value, the use of a complexing agent and/or an increase in column temperature are powerful tools for broadening the scope of cation chromatography.
- 8.000.6040Improved cation separation thanks to a new column material
Comparative measurements show that the new Metrosep C 4 cation column has even better separation characteristics than the previous Metrosep C 2 and Metrosep Cation 1-2 column types. The Metrosep C 4 column has a clearly improved peak shape which leads to a better separation of the individual peaks. Using Metrosep C 4 the number of theoretical plates per meter was noticeably higher than that obtained on the Metrosep C 2 or C 1-2 column. Additionally for standard cations transition metals and amines, the Metrosep C 4 column shows better results with respect to peak shape, peak height, resolution and asymmetry factor. The clearly improved resolution of the C 4 column with its narrow and high peaks achieves baseline separation for six standard and six transition metal cations. Analysis times and peak areas obtained with the C 4 column are in the same range as those obtained with its predecessors.As a result of the latest production methods and materials, the promising Metrosep C 4 column excels by an outstanding separation performance for complex mixtures comprising standard cations, transition metal cations and amines.
- 8.000.6042Straightforward multipoint calibration using a single standard
The combination of 850 Professional IC, 858 Professional Sample Processor, Dosino and MagIC NetTM software offers a variety of automated ion chromatographic sample preparation and calibration techniques available as an anion, cation or dual channel system. Calibration is straightforward and requires only one multi-ion standard.Inline calibration allows the calibration of any standard concentration in the ppt range by using one single stable standard solution at the ppb level. By using a preconcentration column and switching the valves one, two or more times different calibration concentrations at the ultra-trace level can be created with unprecedented reproducibility. The inline preconcentration technique uses a pre-concentration column and is ideally suited for trace analysis in complex matrices, especially when combined with matrix elimination. Besides facilitating the preparation of g/L to ng/L calibration graphs Metrohm`s intelligent techniques are capable of logical decision making. While Metrohm`s intelligent Partial Loop technique (MiPT) allows samples with a wide concentration range to be injected without previous manual dilution, the intelligent inline dilution technique, after the first sample injection, compares peak areas, calculates, if necessary, the dilution factor, dilutes and automatically re-injects the sample. The presented inline techniques allow the rationalization of the time-consuming, error-prone and cost-intensive manual preparation of standard solutions. They guarantee that the determined sample concentrations always lie within the calibration range. Higher sample throughputs as well as lower analysis costs and improved data reliability are achieved.
- 8.000.6044Fully automated sample preparation for liquid chromatographic content determinations
Inline coupling of the 815 Robotic Soliprep with an ion chromatograph (IC) allows the straightforward determination of anions and cations in tablets. After automatic solvent addition and subsequent comminution, the homogenized tablet samples (Singulair and Bezafibrat) are filtered and subsequently transferred to the injector. The completely automated sample preparation saves both time and money, guarantees traceability of each sample preparation step and yields correct and precise results. In the range of 0.2…50 mg/L, six-point calibration curves for anions and cations yield correlation coefficients better than 0.99990 and 0.99991, respectively. While relative standard deviations (RSDs) for sub-ppm levels of nitrate, sulfate, calcium and magnesium in Singulair and Bezafibrat are smaller than 3.64%, RSD of ppm levels of chloride is better than 0.83%. The application of further inline sample preparation steps such as pulverizing, extracting, filtering or diluting facilitates numerous custom-tailored setups for ion determinations in exacting matrices such as animal feed, sediments or food.
- 8.000.6055Liquid handling applied to automated sample preparation in liquid chromatography
In routine chemical analysis, the predominant challenge involves a higher sample throughput, improved reproducibility, liquid handling flexibility and reduced personnel costs. In response to these requirements, the 872 Extension Module Liquid Handling in combination with the MagIC NetTM software and the well-proven Dosino technology expands the possibilities of inline sample preparation and opens up new fields of application. Among others, the module can be used, together with an optional mixing vessel, for pH adjustments, pre-column derivatizations, or the mixing of solutions.As a representative of an inline sample preparation technique, this poster describes the performance of precise dilutions. By using only one single stable standard solution, multi-point calibration curves can be automatically recorded by diluting a concentrated standard in an external vessel.
- 8.000.6064Microbore columns: a contribution to green chemistry
Available sample size, mass sensitivity, efficiency and the detector type are important criteria in the selection of separation column dimensions. Compared to conventional 4 mm i.d. columns, microbore columns excel, above all, by their low eluent consumption. Once an eluent is prepared, it can be used for a long time. Additionally, the lower flow rates of microbore columns facilitate the hyphenation to mass spectrometers due to the improved ionization efficiency in the ion source.With the same injected sample amount, a halved column diameter involves a lower eluent flow and results in an approximate four-fold sensitivity increase. In a converse conclusion, this means that with less sample amount, microbore columns achieve the same chromatographic sensitivity and resolution than normal bore columns. This makes them ideally suited for samples of limited availability.
- 8.000.6065Automated ion chromatographic determinations over six orders of magnitude
Metrohm`s intelligent Preconcentration Technique with Matrix Elimination (MiPCT-ME) excels in its capacity to perform automatic ion chromatographic determinations over 6 orders of magnitude. Crucial requirements for this are the system`s intelligence and the exact measurement of the sample volume. While the intelligence allows to compare results and take decisions, the dosing device takes over the high-precision liquid handling of even single-digit microliter volumes to the preconcentration column. By using only one analytical setup and without additional rinsing, samples containing both ultratraces and high concentrations can be analyzed.As the other Metrohm Inline Techniques, the MiPCT-ME technique presented reduces the workload, ensures complete traceability, is free of carryover effects and significantly improves accuracy and reproducibility of the results.
- 8.000.6076Sequential suppression for conductivity detection in ion chromatography
The poster describes how different suppressors (MSM and MCS) work and mentions possible applications.
- 8.000.6084Spectroelectrochemical analysis of a N-aryl-D2-pyrazoline derivative
By combining the information from electrochemical and spectroscopic techniques, UV/VIS spectroelectrochemistry (UV/VIS-SEC) allows a comprehensive analysis of electron-transfer processes and complex redox reactions. The anodic oxidation of a N-aryl-D2-pyrazoline derivative was investigated by combining cyclic voltammetry and UV/VIS spectroscopy. In-situ measured UV/VIS absorbance depicted the absorption changes that accompanied the anodic oxidation and could therewith prove the stability of the electrogenerated radical cation. UV/VIS-SEC provides a powerful tool for the in situ study of shorter-lived species, reaction mechanims, and kinetics in a wide variety of electrochemical active organic, inorganic, and biological molecules.
- AB-073Polarographic analysis – half-wave potentials of organic substances
This Bulletin is a supplement to Application Bulletin no. 36 (Half-wave potentials of inorganic substances) in the sense that the half-wave potentials of 100 different organic substances are listed. At the same time the supporting electrolytes used and the limits of determination are given.The various substances are listed in alphabetical order. The most important polarographically active functional groups are taken into consideration. This means that substances for related structures can also be determined polarographically in the same or similar supporting electrolytes, although they may not appear in the list.Unless otherwise stated, the half-wave potentials refer to a temperature of 20 °C, and the potentials are given in volts, measured with a sat. KCI-Ag/AgCl electrode assembly.The determination limits give the smallest concentrations which can be measured without risking serious errors in the results. In all cases, the limit of detection lies below the limit of determination.