응용 분야 및 기법
- WP-022In situ SERS effect with screen-printed silver electrodes
In this work, time resolved Raman spectroelectrochemistry measurements with screen printed electrodes are shown. The instrument used combines in a totally integrated box: a 785 nm laser source, a high resolution Raman spectrometer and a bipotentiostat/galvanostat. Experiments are controlled with an excellent spectroelectrochemical software which allows real time data collection and useful data treatment.
- AN-EC-031Monitoring ferrocyanide oxidation using hyphenated EC-Raman
This Application Note highlights the use of Metrohm Hyphenated EC-Raman Solutions to monitor the reversible oxidation of ferrocyanide at a gold electrode.
- AN-RA-004UV/VIS spectroelectrochemical monitoring of 4-nitrophenol degradation
Spectroelectrochemistry is a multi-response technique that provides both electrochemical and spectroscopic information about a chemical system in a single experiment, i.e., it offers information from two different points of view. Spectroelectrochemistry focused on the UV/VIS region is one of the most important combinations because this allows us to obtain not only valuable qualitative information, but also outstanding quantitative results. In this application note, the degradation kinetics for 4-nitrophenol, a known pollutant, were determined using SPELEC.
- AN-RA-005Characterization of single-walled carbon nanotubes by Raman spectroelectrochemistry
Spectroelectrochemistry is a multi-response technique that provides electrochemical and spectroscopic information about a chemical system in a single experiment, i.e., it offers information from two different points of view. Raman spectroelectrochemistry could be considered as one of the best techniques for both the characterization and behavioral understanding of carbon nanotube films, as it has traditionally been used to obtain information about their oxidation-reduction processes as well as the vibrational structure. This application note describes how the SPELEC RAMAN is used to characterize single-walled carbon nanotubes by studying their electrochemical doping in aqueous solution as well as to evaluate their defect density.
- AN-SEC-002Gathering information from spectroelectrochemical experiments
In-situ spectroelectrochemistry provides dynamic electrochemical and spectroscopic information concurrently with the redox reaction occurring on the electrode surface. Although different spectroelectrochemical configurations can be used, simple equations explain how to relate electrochemistry and spectroscopy for each experimental setup. This Application Note describes how the quantification of one electrochemical parameter (the diffusion coefficient) is calculated from the spectroscopic data as a proof of this concept.
- AN-SEC-003UV-Vis spectroelectrochemical cell for conventional electrodes
The development of a novel reflection cell for conventional electrodes facilitates the performance of spectroelectrochemical measurements. This device allows researchers to work in aqueous solutions as well as in organic media due to its chemical resistance.
- AN-RA-009Comparison of SPELEC RAMAN and standard Raman microscopes
This Application Note compares SPELEC RAMAN and a standard Raman instrument by analyzing their performance in measuring single-walled carbon nanotubes (SWCNT).
- AN-EC-033Utilizing hyphenated EC-Raman to study a model system
This Application Note presents a walkthrough of an experiment on 4-nitrothiophenol using hyphenated EC-Raman, a combination of Raman spectroscopy and electrochemistry.
- AN-RA-003In situ, fast and sensitive: Electrochemical SERS with screen-printed electrodes
Substrates for surface-enhanced Raman spectroscopy (SERS) are typically fabricated with complex (micro/nano)structures of noble metals, enabling trace level detection of analytes. Due to the high costs and reactivity of these SERS substrates, they often have a limited shelf life. Development of new substrate materials which minimize these issues yet maintain the same performance standards is a constant concern.Screen-printed electrodes can be easily fabricated using different metallic materials with the well-established screen-printing method, leading to mass production of versatile, cost-effective, and disposable devices. In this Application Note, the feasibility of using readily-available screen-printed metal electrodes as suitable substrates for the fast and sensitive detection of different chemical species by in situ electrochemical SERS (EC-SERS) is shown.
- AN-SEC-001Spectroelectrochemistry: an autovalidated analytical technique
Spectroelectrochemical experiments not only provide outstanding qualitative information about samples, but also offer other quantitative data that can be considered when performing analyses. A single set of experiments allows analysts to obtain two calibration curves: one with the electrochemical data and another with the spectroscopic information. The concentration of tested samples is calculated by using both curves, confirming the obtained results by two different routes. In this Application Note, comparison between electrochemical and spectroscopic determinations demonstrates that the two methods measure uric acid (UA) indistinctively, with close agreement of the calculated values with empirical data.