응용 분야 및 기법
- 410000016-AQuantification of Urea in Ethanol by Raman Spectroscopy
Urea in widely employed as a nitrogen-release fertilizer with more than 90 % of urea production destined for agricultural applications. Urea is also known to form complexes with fatty acids, which have been employed for separation of complex mixtures and purification processes. In this application note, we present the quantification of the concentration of urea in ethanol by Raman Spectroscopy and show how this method can be employed for determining the percentage of urea in a solid inclusion compound with stearic acid.
- 8.000.6011Ion chromatographic determination of anions, cations and organic acids in biofuels
Quality and process control of biofuels require straightforward, fast and accurate analysis methods. Ion chromatography (IC) is at the leading edge of this effort. Traces of anions in a gasoline/ethanol blend can accurately be determined in the sub-ppb range after Metrohm Inline Matrix Elimination using anion chromatography with conductivity detection after sequential suppression. While the analyte anions are retained on the preconcentration column, the interfering organic gasoline/bioethanol matrix is washed away.Detrimental alkali metals and water-extractable alkaline earth metals in biodiesel are determined in the sub-ppm range using cation chromatography with direct conductivity detection applying automated extraction with nitric acid and subsequent Metrohm Inline Dialysis. Unlike high-molecular substances, ions in the high-ionic strength matrix diffuse through a membrane into the low-ionic water acceptor solution. In biogas reactor samples, low-molecular-weight organic acids stem from the biodegradation of organic matter. Their profile allows important conclusions concerning conversion in the anaerobic digestion reaction. Volatile fatty acids and lactate can be accurately determined by using ion-exclusion chromatography with suppressed conductivity detection after inline dialysis or filtration.
- 8.000.6020Titrimetric analyses of biofuels
Several testing methods such as the determination of the acid and the iodine numbers in biodiesel as well as the quantification of sulfate and chloride in bioethanol are described.
- AB-177Automatic determination of the bromine number and the bromine index in petroleum products
The bromine number and bromine index are important quality control parameters for the determination of aliphatic C=Cdouble bonds in petroleum products. Both indices provide information on the content of substances that react withbromine. The difference between the two indices is that the bromine number indicates the consumption of bromine in gfor 100 g sample and the bromine index in mg for 100 g sample.This Application Bulletin describes the determination of the bromine number according to ASTM D1159, ISO 3839, BS2000-130, IP 130, GB/T 11135 and DIN-51774-1. The bromine index determination for aliphatic hydrocarbons is described according to ASTM D2710, IP 299, GB/T 11136 and DIN 51774-2. For aromatic hydrocarbons the determination of the bromine index is described according to ASTM D5776 and SH/T 1767. UOP 304 is not recommended for the determination of the bromine number or bromine index because its titration solvent contains mercuric chloride.
- AB-280Automatic Karl Fischer water content determination with the 874 Oven Sample Processor
Generally speaking, the gas extraction or oven method can be used for all samples which release their water when they are heated up. The oven method is indispensable in cases in which the direct volumetric or coulometric Karl Fischer titration is not possible, either because the sample contains disruptive components or because the consistency of the sample makes it very difficult or even impossible to transfer it into the titration vessel.The present Application Bulletin describes automatic water content determination with the aid of the oven technique and coulometric KF titration, using samples from the food, plastic, pharmaceutical and petrochemical industry.
- AB-404Total acid number titration of petroleum products
The determination of the acid number plays a significant role in the analysis of petroleum products. This is manifested in the numerous standard procedures in use over the world (internal specifications of multinational companies, national and international specifications of ASTM, DIN, IP, ISO, etc.). These procedures differ mainly in the composition of the used solvents and titrants.This bulletin describes the determination of the acid number in petroleum products by applying different types of titration.The potentiometric determination is described according to ASTM D664, the photometric according to ASTM D974 and the thermometric titration according to ASTM D8045.
- AB-427Acid number in petroleum products with thermometric titration
This Application Bulletin describes the determination of the total acid number in various oil samples by catalytic thermometric titration as per ASTM D8045.
- AB-435Connection of the Eco Titrator to the PC
Eco Titrators provide the capability to send PC/LIMS reports directly to a PC. This feature is mainly used to transfer data to an external LIMS system or to simply store the data in a digitally on the PC. Additionally, it is possible to control the Eco Titrator by RS232 commands if the connection is set up according to the procedure described below.The data transfer from the Eco Titrator to a PC can be done by a software- or a hardware-based option. Additional accessories are needed for the hardware-based option whereas for the software-based option two additional softwares must be installed. Both solutions are described in this document.
- AB-445Installation instruction: MVA-25 – 884 Professional VA fully automated for the determination of antioxidants with automatic sample preparation
This Application Bulletin contains installation instructions for the MVA-25 (with automatic sample preparation) used to measure antioxidants in lubricants.
- AN-C-097Cations in ethanol used as biofuel
Determination of traces of lithium, sodium, ammonium, potassium, calcium, and magnesium in ethanol using cation chromatography with direct conductivity detection after Metrohm Inline Matrix Elimination.