Applications
- WP-032Creating Custom Libraries Detection of Binary Explosives with Mira DS
Detection of threatening materials requires robust and sophisticated instruments capable of safe, instantaneous field-analysis of unknowns. In an environment where there is an ever-evolving threat of explosives made from commonlyavailable chemicals, explosive libraries must be customized constantly to include newly targeted materials. Mira DS from Metrohm Raman is the perfect solution for detection of explosives in the field. This handheld Raman instrument is equipped with sophisticated analysis algorithms and a suite of safety features for first responders who need the identity of a potential hazard... NOW! Mira DS and its software can be customized to respond to emerging hazards: this note describes procedures for creating custom libraries of binary explosive precursors to be used in library comparison and mixture matching routines on Mira DS. With these tools, unknown substances can be identified with color-coded warnings for fast action in critical situations.
- 8.000.6087Determination of hexavalent chromium in drinking water according to a U.S. EPA Method
This poster looks at the possibility to modify the existing EPA Method to meet California's rigorous public health goal (PHG) of 0.02 µg/L. After optimizing instrument settings and method parameters, a method detection limit (MDL) of 0.01 µg/L is obtained.
- 410000052-ASee-Through Measurements of Illicit Substances in Commercial Containers with the TacticID®-1064 ST
The TacticID®-1064 ST is a 1064 nm handheld Raman system designed for law enforcement officials, first responders, and customs and border protection officers for rapid field identification of illicit substances such as narcotics, explosives, and other suspicious materials.The TacticID-1064 ST is specially designed with see-through Raman functionality to measure materials through both transparent and opaque containers. These through-barrier measurements remove the need for active sampling of potentially dangerous compounds such as fentanyl, leading to safer operations and reduced wait time for clear results.
- 410000021-APortable Raman Spectroscopy in Forensics: Explosive Residues and Inflammable Liquids
The suitability and potential of Raman spectroscopy in forensics is widely known by forensic specialists who use it in the laboratory to identify a wide variety of compounds including explosives, drugs, paints, textile fibers and inks. However, the use of laboratory-grade Raman outside the laboratory, such as for in‐situ analysis at a crime scene, was something thought possible only in forensic‐fiction until just a few years ago. Fortunately, modern portable Raman spectrometers are commercially available, and their instrumental features are comparable to Raman lab‐ spectrometers.To prove this, some extraordinarily demanding and challenging applications, in which an in‐situ standoff identification of samples might be advisable, were tested.
- AB-404Total acid number titration of petroleum products
The determination of the acid number plays a significant role in the analysis of petroleum products. This is manifested in the numerous standard procedures in use over the world (internal specifications of multinational companies, national and international specifications of ASTM, DIN, IP, ISO, etc.). These procedures differ mainly in the composition of the used solvents and titrants.This bulletin describes the determination of the acid number in petroleum products by applying different types of titration.The potentiometric determination is described according to ASTM D664, the photometric according to ASTM D974 and the thermometric titration according to ASTM D8045.
- AB-061Potentiometric determination of silver – Accurate determination according to EN ISO and GB/T standards
Silver is an important metal not only in jewelry and silverware but also in electrical conductors and contacts. The knowledge of the exact silver content in fine silver and silver alloys ensures that quality standards for jewelry and silverware are met. As for the plating industry, the knowledge of the amount of silver in silver plating baths helps to run the bath efficiently.While X-ray fluorescence (XRF) is a fast alternative to determine the silver content in fine silver and silver alloys, it can only determine the silver content of the outermost sections of the metal. In contrast, titration offers a more comprehensive solution considering the whole sample, thus preventing fraud by thick plating.This application bulletin describes the potentiometric determination of silver in fine silver and silver alloys accordingto EN ISO 11427, ISO 13756, GB/T 17823, and GB/T 18996 as well as in silver plating baths by a titration with potassium bromide or potassium chloride, respectively
- AB-092Potentiometric analysis of lead plating baths
This Bulletin describes the potentiometric determination of lead, tin(II), and free fluoroboric acid.
- AB-101Complexometric titrations with the Cu ISE
This Bulletin describes the complexometric potentiometric titration of metal ions. An ion-selective copper electrode is used to indicate the endpoint of the titration. Since this electrode does not respond directly to complexing agents, the corresponding Cu complex is added to the solution. With the described electrode, it is possible to determine water hardness and to analyze metal concentrations in electroplating baths, metal salts, minerals, and ores. The following metal ions have been determined: Al3+, Ba2+, Bi3+, Ca2+, Co2+, Fe3+, Mg2+, Ni2+, Pb2+, Sr2+, and Zn2+.
- AB-137Coulometric water content determination according to Karl Fischer
This Application Bulletin gives an overview of the coulometric water content determination according to Karl Fischer.Amongst others, it describes the handling of electrodes, samples, and water standards. The described procedures and parameters comply with the ASTM E1064.
- AB-178Fully automated analysis of water samples
The determination of the physical and chemical parameters as electrical conductivity, pH value, p and m value (alkalinity), chloride content, the calcium and magnesium hardness, the total hardness, as well as fluoride content are necessary for evaluating the water quality. This bulletin describes how to determine the above mentioned parameters in a single analytical run.Further important parameters in water analysis are the permanganate index (PMI) and the chemical oxygen deman (COD). Therefore, this Bulletin additionally describes the fully automated determination of the PMI according to EN ISO 8467 as well as the determination of the COD according to DIN 38409-44.