Application Finder
- 410000003-APortable Raman Spectroscopy for the Study of Polymorphs and Monitoring Polymorphic Transitions
Raman spectroscopy is used for material characterization by analyzing molecular or crystal symmetrical vibrations and rotations that are excited by a laser, and exhibit vibrations specific to the molecular bonds and crystal arrangements in the molecules. Raman technology is a valuable tool in distinguishing different polymorphs. Examples of portable Raman spectroscopy for identification of polymorphs and in monitoring the polymorphic transiton of citric acid and its hydrated form are presented.
- 410000008-ARaw Materials Identification through Multiple Polyethylene Bags
The NanoRam is able to test material through multiple layers of transparent plastic bags. Postive identification of material on PE bags from 1 to 9 layers were obtained, demonstrating minimum interference from the PE bags on the material identification result.
- 410000030-APortable Transmission Raman Spectroscopy for At-Line Content Uniformity Testing of Pharmaceutical Tablets
Analytical methods to perform CU testing should ideally be fast, noninvasive and achieved with limited sample preparation. Recently, transmission near-infrared (NIR) spectroscopy and transmission Raman spectroscopy have both been explored as alternative methods for rapid and non-destructive on- and at-line CU testing with no sample preparation. Although quick and nondestructive, transmission NIR spectroscopy suffers from poor chemical selectivity and is sensitive to changes in the testing environment. Transmission Raman spectroscopy combined with chemometric modeling is quickly emerging as a valued technique for CU testing due to its high chemical specificity, which is particularly useful when dealing with complex pharmaceutical formulations that contain multiple components.
- 410000032-APros and Cons of Using Correlation Versus Multivariate Algorithms for Material Identification via Handheld Spectroscopy
The two most common mathematical representations used with handheld Raman spectroscopy as decision-making tools for spectroscopic data: Hit Quality Index (HQI) and significance level (p-value) are presented.
- 410000038-AMaterial ID through Dark Brown PVBag
This technical note is to demonstrate the NanoRam material identification through dark brown plastic bags. NanoRam is shown to work for material identification inside dark brown polyvinyl bag.
- 410000040-ASampling Guidelines for Handheld Raman Measurements – What You Need To Know
Handheld Raman is used for raw material testing of different sample types and forms. The use of optimized sampling accessories enhances the utility of handheld Raman without compromising data quality or complicating testing.
- 410000046-AQTRam® for Content Uniformity Analysis of Low-Dose Pharmaceutical Tablets
In this note, we use a model drug, acetaminophen, to demonstrate the capability of QTRam® to quantify low concentrations of API in compressed tablets.QTRam® is a compact transmission Raman analyzer designed specifically for content uniformity analysis of pharmaceuticals in solid dosage forms.
- 410000061-AIdentification of Starting Materials in Pharmaceutical industry using STRam®-1064
100% starting materials identification testing is one of the FDA’s directives as per 211.84 for FDA regulated industries such as Pharmaceutical, Vaccines, Cosmetics, Tobacco, Animal veterinary products, Food, etc. STRam®-1064 is a Raman analyzer uniquely suited for this purpose. It measures samples through thick packaging materials such as plastics, multilayer kraft paper sacks, and HDPE containers. A long wavelength laser is used to suppress fluorescence. The ID algorithm isolates the sample signature by subtracting that of the packaging material and compares that with library spectra to achieve identification.
- 8.000.6010Inline sample preparation – An effective tool for ion analysis in pharmaceutical products
By means of azide analysis in Irbesartan a simple, fast, precise and accurate ion chromatographic method for the determination of traces of inorganic contaminants in pharmaceuticals is described. Traces of toxic azides in pharmaceutical products can accurately be determined in the sub-ppb range after Metrohm Inline Matrix Elimination using isocratic ion chromatography (IC) with suppressed conductivity detection. While the azide anions are retained on the preconcentration column, the interfering pharmaceutical matrix is washed away by a transfer solution, ideally consisting of 70% methanol and 30% ultrapure water. The analytical setup provides a well-resolved azide peak and thus alleviates the common drawback of excipient interferences, especially from the nitrate anion. Calibration with azide standards is linear over the range of 5…80 ppb, providing a coefficient of determination of 0.9995. The limit of detection (LOD) and the limit of quantification (LOQ) of azide in Irbesartan are 5 and 30 µg/L respectively; the relative standard deviations (RSD) for the peak area, peak height and retention time being smaller than 3.9%. Robustness testing involved variation of column oven temperature and composition of the transfer solution and, in terms of peak area, provided RSDs smaller than 2.8% and 3.1% respectively.
- 8.000.6024Fully automated sample preparation for the content determination of tablets
Benzbromaron is one of the main uricosuric drugs currently used. In addition to sophisticated and expensive LC-MS and GC-MS methods, benzbromaron can be effectively determined by titration with sodium hydroxide solution using a straightforward, fully automated sample preparation method. A high-frequency homogenizer comminutes one or three tablets within 90 or 120 s respectively. The overall analysis time is 8 minutes. Ten-fold determinations with one and three tablets resulted in a benzbromaron content of 99.2 and 98.7 mg per tablet respectively. Increasing the number of tablets from one to three lowers the RSD from 1.36 to 0.88%. These results show an excellent agreement with the benzbromaron content indicated by the manufacturer (approx. 100 mg/tablet).Besides the presented Titrando/homogenizer combination, the other two members of the 815 Robotic Soliprep Sample Processor family offer comprehensive sample preparation possibilities within the fields of IC, HPLC, ICP or voltammetry.
- 8.000.6026Determination of the water content in tablets by automated Karl Fischer titration
The water content of tablets determines the release of their active ingredients as well as their chemical, physical, microbial and shelf-life properties. Accordingly, the water content is of crucial importance and has to be accurately determined. This paper describes the straightforward determination of the water content using automated volumetric Karl Fischer titration (KFT). Tedious sample preparation steps are eliminated by using a high-frequency homogenizer that additionally serves as a stirrer. Prior to titration, the homogenizer comminutes the tablets directly in the KF solution. As the comminution process takes place directly in the hermetically sealed titration vessels, interference from atmospheric humidity does not occur. Even after 24 h in the vessels, the moisture content of four different tablet type samples was within 93…108% of the initially determined values. With a coefficient of determination of 0.99993 the KF method is highly linear for water amounts between 4 and 215 mg. For all investigated tablet types, KFT provides results that lie within the range expected by the manufacturer.
- 8.000.6045Trace-level aliphatic amines in cationic pharmaceutical ingredients
The analytical challenge treated by the present work consists in detecting sub-ppb concentrations of low-molecular-weight amines in the presence of strongly retained cationic drugs by using ion chromatography (IC) with upstream inline coupled-column matrix elimination (CCME). In contrast to direct-injection IC, where the late elution of strongly retained drugs requires eluents with added acetonitrile, the CCME technique uses two preconcentration columns in series. In an «inverse matrix elimination step, cationic drug and target amines are trapped on a high-capacity and a very-high-capacity preconcentration column, respectively. During amine determination, a rinsing solution flushes the drug to waste. This significantly shortens the analysis time and improves sensitivity as well as selectivity. Besides the determination of monomethylamine in Nebivolol hydrochloride discussed here, the CCME technique is a promising tool for detecting further low-molecular-weight amines in a wide range of drugs.
- 8.000.6051PC-controlled dosing and liquid handling
The 800 Dosino controlled by tiamo™ or Touch Control can be used universally for dosing and liquid handling tasks in both the analytical laboratory or directly in the synthesis laboratory. This poster looks at three typical liquid handling applications, the synthesis of metal-organic compounds, the preparation of standards, and the determination of pharmaceutical ingredients.
- 8.000.6078Water determination in pharmaceuticals using an automated Karl Fischer Oven Technique
The poster describes the water determination in pharmaceuticals using the Karl Fischer oven technique.
- 8.000.6089Automated sample measurement in Karl Fischer titration
This poster describes a method for automated and precise dosing of liquid samples into the Karl Fischer titration cell using Metrohm Dosino liquid handling technology. First, the titer was automatically determined with ultrapure water. The same dosing procedure proved valuable for the automated water determination in highly viscous water-glycol fluids and low-boiling organic solvents such as n-pentane. Lastly, the method copes with the labor-intensive and human error-prone suitability test stipulated in chapter 2.5.12 in the European Pharmacopoeia.
- 8.000.6102Ion chromatography – the all-rounder for pharmaceutical analysis
Pharmaceutical analysis guarantees drug safety by providing information on the identity, content, quality, purity, and stability of pharmaceutical products using analytical chemistry. Ion chromatography (IC) offers a broad range of pharmacopeia-compliant applications for quality control, monitoring, and improving drug manufacturing.As a very accurate and versatile technique, IC meets the requirements of many pharmaceutical applications. IC is a USP-accepted standard method for the determination of active pharmaceutical ingredients (APIs), excipients, impurities,pharmaceutical solutions as well as pharmaceutical starting materials, finished pharmaceutical products (FPPs) and even body fluids.This poster describes some typical examples.
- 8.000.6106Potassium Assay in OTC Drug Products by Ion Chromatography
This poster presented jointly with USP at AAPS meeting shows, that we successfully developed and validated a single IC procedure for potassium assay and identification in potassium bicarbonate and potassium chloride for effervescent oral suspension. The optimized chromatographic conditions could be used for other cationic impurities, such as magnesium, calcium, sodium, and ammonium in potassium bicarbonate and potassium chloride for effervescent oral suspension. Single chromatographic method for assay and identification simplifies the overall QA/QC workflow.
- 8.000.6107USP Modernization Initiative: Ionic Impurities in Drug Substances by Ion Chromatography
This poster presented jointly with USP at AAPS meeting shows, that we successfully validated an IC method to determine chloride and sulfate in drug substances, potassium bicarbonate and potassium carbonate. The proposed IC method overcomes limitations of the turbidimetry/visual comparison methods.
- AB-126Polarographic determination of quinine
This Bulletin describes a simple polarographic method for the determination of quinine in drinks and tablets. Whereas in drinks quinine can be determined directly, in the case of tablets it must first be extracted. The limit of quantification is 0.2 mg/L or 4 μg/tablet.
- AB-134Determination of potassium with an ion-selective electrode
Potassium is one of the most common elements and can be found in many different minerals and other potassium compounds. It is of importance for humans, animals and plants as it is an essential mineral nutrient and involved in many cellular functions like cell metabolism and cell growth. For these reasons, it is important to be able to declare the potassium content of food or soil to reduce problems that may arise by a potassium deficiency or extensive consumption.This bulletin describes an alternative to flame photometric method using an ion selective electrode and direct measurement or standard addition technique. Several potassium determinations in different matrices using the combined potassium ion-selective electrode (ISE) are presented here. Additionally, general hints, tips and tricks for best measurement practice are given.
- AB-213Determination of nicotinamide by polarography
This Application Bulletins describes the determination of nicotinamide (vitamin PP), a vitamin of the B series. Instructions for the determination in solutions (e.g. fruit juice), vitamin capsules and multivitamin tablets are given. The linearity range of the determination is also specified. The limit of detection is approximately 50 μg/L nicotinamide.
- AB-215Determination of folic acid by polarography
This Application Bulletin describes the polarographic determination of folic acid, a vitamin of the B series, also known as vitamin B9 or vitamin BC. Instructions for the determination in solutions (e.g. fruit juice), vitamin capsules and multivitamin tablets are given. The linear range of the determination is also specified. The limit of detection is approx. 75 µg/L folic acid.
- AB-218Determination of thiamine (vitamin B1) by polarography
This Application Bulletins describes the polarographic determination of thiamine (vitamin B1). The procedure allows an analysis in monovitamin preparations. The linear range of the determination is also given. The limit of detection is approx. 50 µg/L thiamine.
- AB-219Determination of riboflavin (vitamin B2) by polarography
This Application Bulletin describes the polarographic determination of riboflavin (vitamin B2). The procedure allows an analysis in monovitamin preparations. The limit of determination is approx. 100 μg/L.
- AB-224Determination of pyridoxine (vitamin B6) by polarography
This Application Bulletins describes the polarographic determination of pyridoxine (vitamin B6). The method given allows determination in monovitamin and in some multivitamin preparations. The linear range of the analysis is also specified. The limit of detection is approx. 100 µg/L pyridoxine · HCI.
- AB-250Polarographic determination of diazepam in body fluids and pharmaceutical preparations
Diazepam belongs to the 1,4-benzodiazepine group of compounds, which are used for medical purposes as tranquilizers and antidepressants. This Bulletin describes the determination of diazepam in tablets and body fluids (blood, serum, urine) by means of differential pulse polarography. If a Britton-Robinson buffer pH = 2.8 with a methanol volume fraction of 20% is used as the supporting electrolyte then a pronounced reduction peak is obtained at -0.73 V; this allows diazepam concentrations even below 0.05 µg/mL to be determined in blood. The necessary sample preparation steps are also dealt with in this Bulletin.
- AB-280Automatic Karl Fischer water content determination with the 874 Oven Sample Processor
Generally speaking, the gas extraction or oven method can be used for all samples which release their water when they are heated up. The oven method is indispensable in cases in which the direct volumetric or coulometric Karl Fischer titration is not possible, either because the sample contains disruptive components or because the consistency of the sample makes it very difficult or even impossible to transfer it into the titration vessel.The present Application Bulletin describes automatic water content determination with the aid of the oven technique and coulometric KF titration, using samples from the food, plastic, pharmaceutical and petrochemical industry.
- AB-358Analysis of residual moisture in a lyophilized pharmaceutical product by near-infrared spectroscopy (NIRS)
This Application Bulletin describes the method of near-infrared spectroscopy in diffuse reflection for the purpose of determining residual moisture in a lyophilized pharmaceutical product. Numerous sample vials containing freeze-dried pharmaceuticals were spiked with varying amounts of water for calibration purposes. The resulting differences in the absorption wavelengths of the OH-oscillation were correlated with the water content determined by Karl Fischer titration using the algorithm of multiple linear regression (MLR).
- AB-410Pharmaceutical analysis using near-infrared spectroscopy
The present Application Bulletin contains NIR applications and feasibility studies using NIRSystems devices in the pharmaceutical industry. Qualitative and quantitative analyses of a wide variety of samples are part of this bulletin. Each application describes the instrument that was originally used for the analysis, as well as the system recommended for the analysis and the results that were achieved thereby.
- AB-423Improvement of optical focusing properties in mobile Raman systems for pharmaceutical analysis
This Application Bulletin compares the unique focusing technology of the portable Metrohm Raman system "Mira" with conventional methods. The method described here is called Orbital Raster Scan (ORS). Experiments show the advantages of ORS technology, using determination and quantification of medicines as an example. It improves the reproducibility of the Raman signals from targeted, active, pharmaceutical ingredients (APIs) in effervescent, cold medicines. Shorter analysis times and an improved, consistent assignment of spectra of the known medicine with the help of a spectral library are further advantages of ORS technology.
- AN-C-109Trans-4-methylcyclohexylamine in a pharmaceutical product
Determination of trans-4-methylcyclohexylamine in a pharmaceutical product using cation chromatography with direct conductivity detection.
- AN-C-110Tributylamine in gabapentine
Determination of tributylamine in a pharmaceutical product (gabapentine) using cation chromatography with direct conductivity detection.
- AN-C-119Bethanechol chloride and calcium in tablets (Metrosep C 4 - 150/4.0)
Determination of Bethanechol chloride and calcium in tablets using cation chromatography with direct conductivity detection.
- AN-C-120Bethanechol chloride and HPTA (2-hydroxy-propyl-trimethyl ammonium chloride) in the presence of sodium and calcium (Metrosep C 4 - 150/4.0)
Determination of Bethanechol Chloride and HPTA (2-hydroxy-propyl-trimethyl ammonium chloride) besides sodium and calcium using cation chromatography with direct conductivity detection.
- AN-C-127Benzylamine in a beta blocker
Determination of benzylamine in a beta blocker (Nebivolol) using cation chromatography with direct conductivity detection. A step gradient for fast elution of the main component is applied.
- AN-C-128Dimethylamine in Metformin
Determination of dimethylamine in Metformin (N,N-dimethylimidodicarbonimidic diamide, anti-diabetic drug) using cation chromatography with direct conductivity detection.
- AN-C-146Bethanechol and HPTA (2-hydroxy-propyl-trimethyl ammonium) besides sodium and calcium (Metrosep C 6 - 250/4.0)
Bethanechol is a pharmaceutical compound which is used to treat urinary retention. This API (active pharmaceutical ingredient) can be determined by cation chromatography with direct conductivity detection. A good separation is achieved between bethanechol and its degradation product 2-hydroxy-propyl-trimethyl ammonium (HPTA) and the standard cations. Peak shape and resolution meet the USP requirements for bethanechol.
- AN-C-181Potassium in potassium bitartrate as per USP
Within the scope of the USP monograph modernization, potassium is determined in potassium bitartrate applying cation chromatography with direct conductivity detection. The USP41 monograph for “Potassium bitartrate” does not yet mention an assay for potassium. The separation is performed on a Metrosep C 6 - 150/4.0 column (L76). The assay of potassium is performed with two commercially available products according to USP definitions. All acceptance criteria are fulfilled.
- AN-C-182Potassium in potassium sodium tartrate as per USP
Within the scope of the USP monograph modernization, potassium is determined in potassium sodium tartrate applying cation chromatography with direct conductivity detection. The USP41 monograph for “Potassium sodium tartrate” does not yet mention an assay for potassium. The separation is performed on a Metrosep C 6 - 150/4.0 column (L76). The assay of potassium is performed with two commercially available products according to USP definitions. All acceptance criteria are fulfilled.
- AN-C-183Potassium in potassium bicarbonate effervescent tablets for oral solution
Within the scope of the USP monograph modernization, potassium is determined in potassium bicarbonate effervescent tablets for oral suspension applying cation chromatography with direct conductivity detection. The separation is performed on a Metrosep C 6 - 150/4.0 column (L76). All acceptance criteria are fulfilled.
- AN-C-184Potassium and sodium bicarbonates and citric acid effervescent tablets for oral solution
As an alternative to flame photometry, ion chromatography with non-suppressed conductivity detection has been approved by the USP as a validated method to quantify potassium and sodium content in potassium and sodium bicarbonates and citric acid effervescent tablets for oral solution. The present IC method has been validated according to USP General Chapter <621>.
- AN-C-185Potassium in potassium bicarbonate and potassium chloride effervescent tablets for oral solution
As an alternative to flame photometry, ion chromatography with non-suppressed conductivity detection has been approved by the USP as a validated method to quantify potassium content in potassium bicarbonate and potassium chloride effervescent tablets for oral solution. The Metrosep C 6 - 150/4.0 column (L76) provides the required separation of potassium and magnesium. The present IC method has been validated according to USP General Chapter <621>.
- AN-C-186Sodium in potassium sodium tartrate as per USP
Within the scope of the USP monograph modernization, sodium is determined in potassium sodium tartrate applying cation chromatography with direct conductivity detection. The USP41 monograph for «Potassium sodium tartrate» does not yet mention an assay for sodium. The separation is performed on a Metrosep C 6 - 150/4.0 column (L76). The assay of potassium is performed with two commercially available products according to USP definitions. All acceptance criteria are fulfilled. See AN-C-182 for the respective determination of potassium. Apllying this method allows to determine sodium and potassium simultaneously according to USP.
- AN-C-194IC Assays for Calcium and Magnesium according to USP
Calcium carbonate has a wide applicability in the pharmaceutical industry as an excipient and also as an active ingredient, and in the food industry as a major dietary supplement. The U.S. Pharmacopoeia (USP) monographs for calcium and magnesium carbonates tablets as well as calcium carbonate and magnesia chewable tablets currently describe manual titration as the assay procedure for calcium and magnesium. The USP has embarked on a global initiative to modernize many of the existing monographs across all compendia. In response to this initiative, two alternative analytical methods were developed to determine the analytes calcium and magnesium. This Application Note presents ion chromatography (IC) procedures using conductivity detection that provide better accuracy and specificity and are suitable for the intended purpose. These validated IC methods (according to USP General Chapter <1225>) offer a significant improvement to the existing assays because they can simultaneously determine both analytes calcium and magnesium, saving both time and effort.
- AN-C-198Calcium acetate assay in calcium acetate capsules
The assay of calcium acetate, often used as a phosphate binder for dialysis patients, can be performed with ion chromatography (IC) as per USP <621> and <1225>.
- AN-CS-005Determination of tetrabutylammonium in atorvastatin using sequential suppression
Atorvastatin is a medication that is used for reducing cholesterol levels. A sensitive and reliable method for TBA detection is required, given that trace amounts of tetrabutylammonium (TBA) are to be found in the presence of atorvastatin and its derivatives. One such method is ion chromatographic separation on the Metrosep C Supp 1 - 250/4.0 with subsequent conductivity detection and sequential suppression.
- AN-I-017Potassium in electrolyte powder – Fast and economical determination by standard addition
The determination of the potassium content in foodstuffs plays a major role in the food and dietary supplement industry, as potassium is an essential mineral nutrient for humans. It is an important intracellular cation and also plays a important role in processes within cells, where it is involved in the regulation of numerous body functions like blood pressure, cell growth and muscle control.As a dietary supplement, potassium is present in e.g., electrolyte powder, electrolyte drinks and food supplements. To quantify the potassium content in such products, e.g. flame photometry can be used. In this work, an alternative, ion measurement by standard addition, is described, which is fast, inexpensive and simple to use.
- AN-K-054Determination of the water content in tablets
This Application Note describes the determination of the water content in tablets using automated volumetric titration including sample preparation (MATi 11).
- AN-N-071Alendronate in tablets in accordance with the Chinese Pharmacopoeia
Alendronate, also referred to as alendronic acid, is a biphosphonate used to treat osteoporosis. It is the main ingredient in the tablets and is determined in accordance with the Chinese Pharmacopoeia (2015). Separation takes place in the Metrosep A Supp 4 - 250/4.0 column; direct conductivity detection is used for quantification.
- AN-NIR-001Determination of active ingredients in solid (pharmaceutical) dosage forms utilizing solid-state standard additions
Two of the leading pain remedies, aspirin and acetaminophen, are compared with generic samples for content uniformity testing using near-infrared spectroscopy (NIRS). The method of standard addition is used for quantification. To reduce most of the effects that stem from particle size and packing differences, second derivative spectra are used.
Did you know?
A glass buret would need to be 30 m long to achieve the same accuracy as our piston burets.
Show another