Application Finder
- AN-AUT-001Automated sample handling and analysis with NOVA: Autolab in combination with Metrohm Liquid Handling
Automatic sample handling and analysis is very convenient for routine measurements on large number of samples. Metrohm offers a wide range of high performance liquid handling devices that can be combined with the Autolab product range and can be directly controlled by the NOVA software.
- AN-AUT-002Automated sample handling and analysis with NOVA: Standard addition with the Metrohm 800 Dosino
The Metrohm 800 Dosino is the workhorse of any automated liquid handling setup. This instrument can be conveniently used in combination with the NOVA software and integrated conveniently with electrochemical measurements performed with the Autolab systems.
- AN-AUT-003Automated sample handling and analysis with NOVA: High-throughput electrochemistry
The Metrohm 858 Professional Sample Processor is a robotic liquid handling system capable of handling large series of samples automatically. This instrument provides a platform that can be directly controlled by the NOVA software and combined with the Autolab potentiostat/galvanostat for automated high-throughput electrochemical measurements.
- AN-BAT-001High voltage measurements: Characterization of NiMH batteries with Autolab PGSTAT302N in combination with voltage multiplier
A nickel metal hydride battery, abbreviated NiMH, is a type of rechargeable battery similar to a nickel-cadmium (NiCd) battery but, for the anode, instead of cadmium, it has a hydrogen absorbing alloy. Like in NiCd batteries, nickel is the cathode. The voltage output of such packs is directly proportional to the number of single cells in the pack. In some cases, the total voltage can exceed the maximum of 10 V that is measurable by the Autolab potentiostat/galvanostat. To apply and measure voltages greater than 10 V, we have developed a voltage multiplier that increases the voltage range of the Autolab.
- AN-BAT-002Galvanostatic charge-discharge of a Li-ion battery with Autolab
Lithium-ion (Li-ion) batteries are one of the most important energy storage devices in the market. A typical Li-ion battery is usually composed of one or more cells. Characterization of Li-ion cells and batteries usually involves the galvanostatic charge and discharge during various cycles.
- AN-BAT-003Galvanostatic Intermittent Titration Technique (GITT)
This Application Note shows how AUTOLAB and NOVA is used to perform GITT tests on a Li-ion battery. Here,galvanostatic charge pulses are applied, each followed by relaxation time, until the upper potential limit is reached. Then, discharge pulses are applied, followed by equilibration time, until the lower potential limit is reached. From the potential vs. time plot, important information for calculating the diffusion coefficient and thermodynamics parameters quantities can be obtained.
- AN-BAT-004Potentiostatic intermittent titration technique (PITT)
During charge and discharge of a Li-ion battery, lithium ions are transported from one electrode through the electrolyte to the other electrode. Knowing the chemical diffusion coefficient of electrode materials is crucial. The potentiostatic intermittent titration technique (PITT) is one of the most used techniques to retrieve insights on the diffusion coefficient of the electrode active materials.
- AN-COR-001Corrosion part 1 – basic concepts
Corrosion refers to a process that involves deterioration or degradation of metal. The most common example of corrosion is the formation of rust on steel. Most corrosion phenomena are of electrochemical nature and consist of at least two reactions on the surface of the corroding metal.
- AN-COR-002Corrosion Part 2 – Calculation of Corrosion Parameters with NOVA
Electrochemical methods provide an alternative to traditional methods used to determine the rate of corrosion. For example, corrosion rates, the rates at which a specimen corrodes, can be calculated from simple electrochemical measurements like a linear sweep voltammetry (LSV).
- AN-COR-004Corrosion part 4 – equivalent circuit models
Electrochemical impedance spectroscopy or EIS has been used effectively to measure the polarization resistance for corrosion systems and for the determination of corrosion mechanisms.
- AN-COR-006Critical Pitting Temperature (CPT) as per ASTM G150
This Application Note is based on the ASTM standard G150, developed to test the resistance of stainless steel, and otheralloys related to stainless steel, on pitting formation at elevated temperature. This is achieved by determining the potential-independent critical pitting temperature (CPT), defined as the lowest temperature at which pitting evolution occurs. The CPT experiment consists of applying a potential to the specimen while the cell temperature is raised and recording the current.
- AN-COR-017Coulometric Reduction as per ASTM B825
The ASTM B825 is used to determine the corrosion and tarnish film on metal surfaces. This is achieved by using the so-called cathodic reduction method. With the help of a Metrohm Autolab PGSTAT302N and a Metrohm Autolab 1 L corrosion cell, a procedure to replicate the ASTM B825 is shown.
- AN-EC-002Reference electrodes and their usage
A reference electrode has a stable and well-defined electrochemical potential (at constant temperature), against which the applied or measured potentials in an electrochemical cell are referred. A good reference electrode is therefore stable and non-polarizable. In other words, the potential of such an electrode will remain stable in the used environment and also upon the passage of a small current. This application note lists the most used reference electrodes, together with their range of use.
- AN-EC-003Ohmic Drop Part 1 – Basic Principles
When current flows through an electrochemical cell, a potential drop between the RE and the WE occurs. This voltage drop is influenced by the electrolyte conductivity, the distance between the reference and the working electrodes, and the magnitude of the current. This application note gives a basic explanation of the Ohmic drop, its causes and the impact on measurements.
- AN-EC-004Ohmic Drop Part 2 – Measurement
This application note describes three different measurement methods of the ohmic drop and the ohmic resistance presented. Current interrupt and positive feedback are fast methods, but care is necessary for their use in order to avoid data misinterpretation or damage to the setup. EIS, on the other hand, is a more reliable method to determine the ohmic resistance. The ohmic drop can be compensated by the potentiostat during the measurement, or a mathematical correction can be applied to the data.
- AN-EC-007Differences between digital scans, analog scans, and signal integration
In this Application Note, analog and digital staircase potential signals are applied to a platinum working electrode in an acidic solution. The differences in measured currents are highlighted and compared with a similar experiment where the current is being calculated from the measured charge.
- AN-EC-008Basic overview of the working principle of a potentiostat/galvanostat (PGSTAT) – electrochemical cell setup
A basic overview of the working principle of a potentiostat/galvanostat is presented. Depending on the application, the connections of the instrument to the electrochemical cell can be (or must be) set up in different ways. Below, the three commonly used electrochemical cell setups are discussed together with the role of the electrodes used in electrochemical measurements.
- AN-EC-012Different approaches for capacitance measurements
The relative permittivity εr, also known as dielectric constant, is of great importance in materials characterization. It can be defined as the ratio between the amount of electrical energy stored in a material and the amount of electrical energy stored in a vacuum. One of the easiest way to obtain the relative permittivity is to calculate it from capacitance values. In this Application Note, five techniques to retrieve capacity values have been compared.
- AN-EC-014Oxygen Reduction Reaction with the Rotating Ring Disk Electrode
The oxygen reduction reaction (ORR) is important to the functional readiness of a fuel cell. Rotating ring disk electrode (RRDE) experiments allow the reaction to be studied in hydrodynamic conditions to determine kinetic properties via the Levich and Koutecký-Levich equations. Mechanistic information is simultaneously obtained from the reaction of intermediates at the secondary (ring) electrode. This application note describes how the RRDE from Metrohm Autolab can be used to study the ORR.
- AN-EC-015Metrohm 663 VA stand for Heavy Metal Ions detection in Water Sample
The determination of heavy metal ions in a solution is one of the most successful application of electrochemistry. In this application note, anodic stripping voltammetry is used to measure the presence of two analytes, in a sample of tap water.
- AN-EC-024Study of electrochemical kinetics of a classical redox couple using the Autolab Microcell HC
The kinetic and mass transfer parameters of the electro-oxidation reaction of TEMPO were measured using the TSC Surface measuring cell for the Autolab Microcell HC system. The cell allows the study of electrochemical processes in liquid electrolytes in a three electrode configuration under temperature control.
- AN-EC-026Comparison between linear and staircase cyclic voltammetry on a commercial capacitor
Capacitors are electronic components necessary for the success of the electronics industry. They have also become essential components of both electric and hybrid vehicles. Electrochemical tests, such as potentiostatic cyclic voltammetry, are used to check the performance of capacitors. VIONIC powered by INTELLO can perform both staircase and linear cyclic voltammetries (CV). This Application Note gives a comparison between the linear and the staircase potentiostatic cyclic voltammetries and highlights the necessity of using the linear CV to best study the performance of capacitors.
- AN-EIS-007EIS Data fitting – How to obtain good starting values of equivalent circuit elements
Electrochemical impedance spectroscopy (EIS) is a powerful technique which provides information about the processes occurring at the electrode-electrolyte interface. The data collected with EIS are modeled with a suitable electrical equivalent circuit. The fitting procedure will change the values of the parameters until the mathematical function matches the experimental data within a certain margin of error. In this Application Note, some suggestions are given in order to get acceptable initial parameters and to perform an accurate fitting.
- AN-FC-001Fuel cells part 1 – what is a fuel cell?
A fuel cell is an electrochemical energy conversion device that produces electricity and heat by electrochemically combining a fuel (typically hydrogen) and an oxidant (typically oxygen). The higher efficiency also results in much lower carbon dioxide emissions and negligible amounts of SOx and NOx (when reformed fuel is used) compared with fossil fuel-based technologies for the same power output.
- AN-FC-002Fuel cells part 2 – types of fuel cells
To overcome the various technical problems, many different fuel cell types have been developed. In this Application Note, proton exchange membrane, direct methanol and solid oxide fuel cells are discussed in more detail.
- AN-FC-003Fuel cells part 3 – characterization using EIS
In this Application Note the use of Electrochemical Impedance Spectroscopy (EIS) for the characterisation of PEM fuel will be demonstrated. It will be shown that EIS is a powerful diagnostic tool for the determination of the following factors that can influence the performance of a PEM fuel cell.
- AN-FC-005Impedance measurements on fuel cells and fuel cell stacks at high currents: Part 2 – Autolab in combination with an electronic load
The use of impedance measurements on fuel cells under load makes it possible to study the influence of the different fuel cell elements on the behavior and (if detectable) on the ageing of the fuel cell. To perform high current density measurements, the Autolab systems can be connected to a third party electronic load. This extends the measurable range of the instrument by several current decades.
- AN-FC-006i/V characterization of a fuel cell stack, DC measurements at high current densities
The operational behavior of a fuel cell stack is usually evaluated by determining the polarization and power density curves of the cell. These curves provide a quick characterization of the stack performance and an assessment of its optimal operating conditions (temperature, humidity, electrocatalyst, ion-exchange membrane).
- AN-PV-001Dye-Sensitized Solar Cells – i-V and Power Plots with the Autolab Optical Bench
A solar cell or photovoltaic cell is a device that converts light energy into electrical energy. Dye-sensitized solar cells (DSC) are currently the subject of intense research in the context of renewable energies as a low-cost photovoltaic (PV) device. Electricity generated from a PV produces zero emissions, is modular, and can produce energy anywhere the sun shines. The standard characterization technique of a PV device consists in the determination of the DC current-voltage curves under different incident light intensities.
- AN-PV-002Photovoltaics part 2 – dye sensitized solar cells, impedance measurements
DC techniques do not provide any information about the internal dynamics of the PV device. Therefore, additional information can be obtained using time-dependent and frequency-dependent measurements. Electrochemical impedance spectroscopy in particular, offers the possibility to investigate the behavior of the device in the frequency domain under operating conditions, at various light intensities.
- AN-PV-003Dye-sensitized solar cells, IMVS and IMPS measurements
Dye-sensitized solar cells (DSC) are currently subject of intense research in the framework of renewable energies as a low-cost photovoltaic (PV) device. To characterize photovoltaic devices, two additional frequency domain methods can be used, based on the modulation of the light intensity. These two methods are Intensity modulated photovoltage spectroscopy (IMVS): measurement of the transfer function between the modulated light intensity and the generated AC voltage, and Intensity modulated photocurrent spectroscopy (IMPS): measurement of the transfer function between the modulated light intensity and the generated AC current.This Application Note illustrates the use of the Metrohm Autolab PGSTAT302N equipped with a FRA32M module, in combination with the Autolab Optical Bench kit to perform IMVS and IMPS characterization of photovoltaic devices.
- AN-PV-004Charge Extraction Method to Study Dye-Sensitized Solar Cells
This application note shows how it is possible with Metrohm Autolab PGSTATs and the Metrohm Autolab Optical Bench, to retrieve information about the mechanism and the kinetics of the back reaction, a side reaction which limits the performances of dye-sensitized solar cells.
- AN-PV-005LED Lights Calibration – Monochromatic LEDs
In this document, a procedure to calibrate the LED light of the Metrohm Autolab Optical Bench is presented. The procedure can be applied to the single-wavelength LED lights. Calibration is performed in order to relate the LED light intensity to the LED driver current. In this way, it is possible to correct the light intensity values when the distance between the solar cell under test and the LED light is changed. Additonally, the calibration allows the user to perform measurements on solar cells while specifying the light intensity values, instead of the LED driver current.
- AN-SC-001Supercapacitors: Principles and characterization using Autolab
Supercapacitors (also known as ultracapacitors, electrochemical capacitors, or double-layer capacitors) are electrochemical devices that have the ability to store and release charge and deliver high power densities over short periods of time. Their ability to store electrical energy efficiently and release electrical energy very quickly make them ideally suited for applications where short time backup power and peak power needs are critical.
- WP-055Corrosion Best Practice – Creating Pipe-flow Conditions Using a Rotating Cylinder Electrode
Electrochemical measurements utilizing a rotating cylinder electrode (RCE) are widely used in industrial corrosion applications when simulation of realistic pipe conditions are necessary in a lab environment. This white paper allows further insight into the particularities and parameters which govern the electrochemical measurements, in particular measurements performed in turbulent flow conditions, and shows a complete picture of the best practice use of this technique. The annexes provide an overview and short explanation of the parameters and laws specific to the fluid behavior in electrochemical cells with RCE.