Application Finder
- AB-441Assay of pyrithione complexes – Reliable determination by potentiometric titration
Pyrithione complexes, such as zinc pyrithione (ZnPT), copper pyrithione (CuPT), and sodium pyrithione (NaPT), are used as fungicides and bactericides. ZnPT is used in the treatment of skin conditions such as seborrheic dermatitis or dandruff. Furthermore, ZnPT is sometimes used as an antibacterial agent in paints to prevent algae and mildew growth. CuPT is primarily in use as a biocide to prevent biofouling of surfaces submerged in water. Meanwhile, NaPT is used as antifungal agent for treatment of mycosis, such as athlete’s foot. The different pyrithione complexes are determined by iodometric titration using a maintenance-free Pt Titrode for the indication.
- AN-NIR-056Quantification of five effective components in pesticides by visible near-infrared spectroscopy
This Application Note shows that visible near-infrared spectroscopy (Vis-NIRS) can be used for the quantification of five effective insecticide and herbicide components (Abamectin emulsifiable concentrate (EC), Emamectin EC, Cyhalothrin EC, Cypermethrin and Glyphosate) in pesticides. Vis-NIRS is an excellent alternative to conventional lab methods, saving both cost and time.
- AN-RA-006New strategies for obtaining the SERS effect in organic solvents
Many electrochemical methods have been developed but are traditionally limited to aqueous media. Raman spectroelectrochemistry in organic solutions is an interesting alternative, but developing new EC-SERS procedures is still required. This Application Note demonstrates that the electrochemical activation of gold and silver electrodes enables the detection of dyes and pesticides in organic media.
- AN-RS-017Trace Detection of Thiabendazole on Bananas
Thiabendazole (TBZ) is a broad-spectrum pesticide used both as a fungicide in fruits and vegetables and for controlling parasites in animal feed. To ensure consumer safety, regulatory agencies establish maximum residue levels (MRL) for pesticide-treated crops based on their review of risk assessment studies. For bananas, which are either aerially sprayed or dipped in protectant solutions of TBZ, the US FDA reports a MRL of 3 μg/g, and the EU stipulates a MRL of 6 μg/g by weight.With Misa (Metrohm Instant SERS Analyzer), the rapid and sensitive detection of TBZ on bananas is demonstrated in formats easily adapted for food safety surveillance testing.
- AN-RS-018Trace Detection of Malachite Green in Stream Water
Malachite green (MG) is a textile dye with effective fungicidal properties, however it is acutely toxic and its metabolites persist in the flesh of fish and mammals, making it a threat to the human food chain. The EU has concluded that contaminated foods containing levels higher than 2 μg/g MG constitute a credible health risk, and several countries have banned malachite green as an aquaculture additive. Despite tight regulation, seafood products contaminated with MG continue to find their way to consumers.Using Misa (Metrohm Instant SERS Analyzer) to ensure food safety, the rapid and highly sensitive detection of malachite green is achieved in a facile assay format.
- AN-RS-022Trace Detection of Carbendazim on Strawberries
Carbendazim (MBC) is a common fungicide approved for regulated use in agriculture globally, outside of the EU. Most MBC is found on fruits as surface contamination, the result of sprays applied prior to harvest. The US EPA has determined that a concentrations below 80 μg/mL in orange juice are not a health risk, while the EU restricts MBC levels to 10 ng/g (from imported produce) in foods intended for baby food production.This Application Note describes a very simple test for surface MBC and provides library spectra demonstrating the sensitive detection of MBC with Misa (Metrohm Instant SERS Analyzer).
- AN-RS-024Trace Detection of Pyrimethanil in Wine
Pyrimethanil is a broad-spectrum fungicide. As grapevines are susceptible to fungal pathogens, large-scale viticulture operations apply pyrimethanil as part of a mixed treatment. Although chemical analysis of wines post-fermentation finds low to undetectable amounts of residue, pyrimethanil is a suspected human carcinogen. The US FDA and EU have therefore established a maximum permissible level of 5 μg/mL pyrimethanil in finished wine products.In this application, trace detection of pyrimethanil in wine with Misa (Metrohm Instant SERS Analyzer) requires few laboratory supplies and minimal sample processing, yet returns rapid results.
- AN-RS-025Trace Detection of Paraquat in Tea Leaves
Paraquat is a highly effective, yet exceptionally toxic herbicide used to manage weeds in agricultural operations. In recognition of paraquat’s danger, the EU and several other countries have banned its use for any application, though the US EPA permits its limited use by licensed applicators. Despite tight regulation, paraquat continues to be produced and is liberally used as an herbicide in over 100 countries without regulatory oversight.Testing for paraquat typically requires involved sample processing and analysis by trained chemists using expensive laboratory instruments such as HPLC, CE, and LC/MS. Misa achieves trace level detection of paraquat residue in tea leaves in a fully integrated, portable, smart system for easy on-site testing by non-technicians.
- AN-RS-027Trace Detection of Thiram on Apples
Thiram is used extensively as a fungicide and parasiticide to prevent disease in crops and as an animal repellent to protect trees and ornamental plants. However, extensive toxicological studies conclude that chronic, high-level exposure can cause considerable organ damage to land and aquatic species. The US defines maximum residue limits that vary for different food crops. In contrast, the EU recently banned thiram and is moving to use pesticides that carry reduced health risks.Using Misa (Metrohm Instant SERS Analyzer), low level detection of thiram on apples is achieved with guided workflows adapted for use by diverse testers.
- AN-RS-029Trace Detection of Malathion on Corn
Malathion is an insecticide widely used on a broad spectrum of plant species. Several studies have implicated chronic exposure to malathion in the development of certain cancers. Maximum residue limits for malathion have been enacted by the regulatory agencies of several countries: the US Food and Drug Administration sets maximum residue limits at 8 μg/g in foods, while the EU has a considerably more stringent limit of 20 ng/g.SERS is an accepted method for detection of malathion on fruit and vegetable surfaces. Misa (Metrohm Instant SERS Analyzer), which requires minimal laboratory chemicals and consumables and provides an extremely user-friendly interface, is an excellent SERS solution for trace detection of food adulterants.
- AN-RS-030Trace Detection of Fenthion in Olive Oil
Fenthion is a multi-purpose insecticide used in many countries for mosquito control. To minimize human exposure and the unintentional poisoning of wildlife, the US EPA has classified fenthion as a restricted-use insecticide. However, the widespread spraying of olive orchards in Mediterranean countries results in olive oils that occasionally exceed the maximum residue limits established for olives.Misa (Metrohm Instant SERS Analyzer) easily achieves sensitive trace detection of fenthion in spiked olive oil after a simple organic solvent extraction. This Application Note presents an excellent example of how the signal from SERS substrates can compete with the target signal at very low levels of detection.
- AN-RS-039Trace Detection of Acetamiprid on Raisins
In this Application Note, MISA (Metrohm Instant SERS Analyzer) from Metrohm Raman excels in the detection of the pesticide acetamiprid on commercially sold raisins. MISA is a viable alternative to analytical laboratory testing in the quest to prevent contaminated foods from reaching and harming consumers.
- EB-003Ion chromatography for food and beverage analysis
Efficiently analyze food products with ion chromatography (IC). Discover its robust applications in quality control for beverages, food additives, and dairy.
- WP-010Glyphosate and AMPA in drinking water
For the first time, glyphosate determination and that of its primary metabolite AMPA in drinking water using IC with pulsed amperometric detection (flexIPAD) in the low µg/L range are shown. Compared to HPLC analysis with a mass-selective detector, it is a very cost-effective method for determining the glyphosate and AMPA content in water and foodstuffs. With a detection limit at approx. 1 µg/L, compliance with limit values for glyphosate can be monitored in the USA, Canada, and Australia, among others.
Did you know?
Our smaller, safer, and more sensitive alternative to 1064 Raman for fluorescent samples: MIRA XTR
Show another