Application Finder
- 8.000.6112Technical Poster: Haloacetic acids in water
LC-MS/MS quantification methods are commonly used to determine trace levels of organic compounds. However, highly polar reversed phases (RPs) lack sufficient retention for very polar compounds, or they fail for charged organics. Separation using ion chromatography (IC) and subsequent MS/MS detection is an innovative alternative approach that combines the fast elution and flexibility of the IC system with the excellent resolution and high sensitivity of the MS/MS detector. This poster presents a fast, robust and reliable IC-MS/MS method for the detection of HAAs and other ionic analytes using the high-end MS/MS system QTRAP 6500+ from SCIEX coupled to a the 940 Professional IC Vario One SeS/PP/HPG instrument. This analytical setup is able to identify and quantify the presence of HAAs at trace levels with LLODs between 0.02 μg/mL and 0.2 μg/L on a single HAA. This capability easily fulfills the sensitivity requirements specified in EU Drinking Water Directive, which specifies a maximum residue level (MRL) of 60 mg/mL for the sum of monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic acid and dibromoacetic acid present in the representative sample.
- AN-M-015Trace haloacetic acids, dalapon, and bromate measurement in drinking water
Chlorinating drinking water can form carcinogenic byproducts. EPA Method 557 enables µg/L-level quantification of haloacetic acids using Metrohm IC-MS/MS technology.
- AN-M-016Resolving haloacetic acids in water
During drinking water disinfection with chlorine, chloramine, or ozone, potentially toxic halogenated byproducts can be formed. The disinfectants can react with naturally occurring bromide and/or organic matter in the source water and form one of the most common and highly toxic disinfection byproducts (DBPs): haloacetic acids (HAAs). To protect human health, maximum tolerable levels of HAA in drinking waters are regulated (EPA 816-F-09-004). The EPA Method 557 specifies the analysis of HAAs beside bromate and dalapon by ion chromatography coupled to tandem mass spectroscopy (IC-MS/MS) with LODs varying from 0.02–0.11 µg/L. However, even with single MS, a high sensitivity is achieved to determine the current MCLs within an adequate accuracy. This Application Note describes the analysis of bromate, chlorite, monochloroacetic acid (MCAA), monobromoacetic acid (MBAA), bromochloroacetic acid (BCAA), bromodichloroacetic acid (BDCAA), dibromoacetic acid (DBAA), dichloroacetic acid (DCAA), tribromoacetic acid (TBAA), chlorodibromoacetic acid (CDBAA), and trichloroacetic acid (TCAA) with IC/MS. The Metrohm Driver 2.1 for EmpowerTM offers the analysis as a single software solution with EmpowerTM.
- AN-S-236Drinking water quality by EPA 300.1
Clean drinking water is cited as a human right by WHO. Policies, standards, and robust and reliable analytical methods are required to safeguard water quality, and by extension, public health. US EPA Method 300.1 is the main standard method for the analysis of inorganic disinfection byproducts (oxyhalides: chlorite, chlorate, bromate) and common inorganic anions (fluoride, nitrite, bromide, nitrate, sulfate, and phosphate) as well as dichloroacetate (DCA) in drinking water. The requirement of using two injections, one for the standard anions and a second for the trace anions, reduces the sample throughput for the laboratories dramatically. Metrohm ion chromatography (IC) with suppressed conductivity detection using the highly selective Metrosep A Supp 7 column fulfills these requirements in a single-run analysis, increasing laboratory efficiency and saving money while keeping analytical quality high.
- WP-066An introduction to ion chromatography mass spectrometry (IC-MS)
Ion chromatography mass spectrometry (IC-MS) is a powerful tool that can handle many challenging analytical tasks which cannot be performed adequately by IC alone. IC-MS is a robust, sensitive, and selective technique used for the determination of polar contaminants like inorganic anions, organic acids, haloacetic acids, oxyhalides, or alkali and alkaline earth metals. After separation of the sample components via IC, mass selective detection guarantees peak identity with low detection limits. The inclusion of automated Metrohm Inline Sample Preparation (MISP) allows not only water samples, but also chemicals, organic solvents, or post-explosion residues to be readily analyzed without need for extensive manual laboratory work. This White Paper explains the benefits of IC-MS over IC in certain cases, the hyphenation of IC and different MS systems, as well as related norms and standards.
- WP-075Simple determination of haloacetic acids (HAAs) in potable water with ion chromatography hyphenated to mass spectrometry
Haloacetic acids (HAAs) are commonly produced as disinfection byproducts (DBPs) from water treatment processes. Some HAAs are regulated by the authorities and have been classified as potentially carcinogenic. They have traditionally been analyzed by gas chromatography (GC), a technique that requires time-consuming sample extraction and derivatization, leading to higher costs per analysis. Ion chromatography hyphenated to mass spectrometry (e.g., single or triple quadrupole MS systems) is a powerful tool that can handle many challenging analytical tasks such as measuring μg/L levels of HAAs in potable water samples. This White Paper explains the benefits of using this hyphenated technique for the accurate measurement of HAAs in potable water.
Did you know?
Our certified service engineers and application specialists are trained to the highest standards at the Metrohm Academy in Herisau.
Show another