Aplikace
Aplikace
- 410000017-ARaman for See Through Material Identification Application Note
A new Raman system design is presented that expands the applicability of Raman to See Through diffusely scattering media such as opaque packaging materials, as well as to measure the Raman spectrum and identify thermolabile, photolabile, or heterogeneous samples.
- 410000021-APortable Raman Spectroscopy in Forensics: Explosive Residues and Inflammable Liquids
The suitability and potential of Raman spectroscopy in forensics is widely known by forensic specialists who use it in the laboratory to identify a wide variety of compounds including explosives, drugs, paints, textile fibers and inks. However, the use of laboratory-grade Raman outside the laboratory, such as for in‐situ analysis at a crime scene, was something thought possible only in forensic‐fiction until just a few years ago. Fortunately, modern portable Raman spectrometers are commercially available, and their instrumental features are comparable to Raman lab‐ spectrometers.To prove this, some extraordinarily demanding and challenging applications, in which an in‐situ standoff identification of samples might be advisable, were tested.
- 410000024-BRaman solution suite for forensics applications
Law enforcement personnel, laboratory technicians, crime scene investigators and many others face a significant challenge for identification of materials in a forensic investigation.Traditionally, technicians used multiple forms of identification in order to collect results from various forms of forensic samples. Although certain technologies are ideal for precise laboratory identification, many technologies, such as Raman spectroscopy, can be successfully used for identification of multiple forensic sample types either directly in the field or in the lab. Raman spectroscopy is classified as a Category A analytical method by the Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG; Version 7.1, 2016).
- 410000029-ASee Through Raman Technology: Expanded capabilities for through package identification using 785 nm and 1064 nm excitation Raman
See through Raman Spectroscopy (STRaman®) is a newly developed technology that expands the capability of Raman spectroscopy to measure samples beneath diffusely scattering packaging material. The STRaman technology features a much larger sampling area than the confocal approach. This design enhances the relative intensity of the signal from the deeper layers, thereby increasing the effective sampling depth, allowing the measurement of material inside visually opaque containers. The larger sampling area has the additional advantage of preventing sample damage by reducing the power density, as well as improving measurement accuracy by eliminating heterogeneous effect.
- 410000052-ASee-Through Measurements of Illicit Substances in Commercial Containers with the TacticID®-1064 ST
The TacticID®-1064 ST is a 1064 nm handheld Raman system designed for law enforcement officials, first responders, and customs and border protection officers for rapid field identification of illicit substances such as narcotics, explosives, and other suspicious materials.The TacticID-1064 ST is specially designed with see-through Raman functionality to measure materials through both transparent and opaque containers. These through-barrier measurements remove the need for active sampling of potentially dangerous compounds such as fentanyl, leading to safer operations and reduced wait time for clear results.
- AN-K-009Water in explosive pellets
The water content of explosive pellets is determined according to Karl Fischer after extraction with methanol.
- AN-M-002Chlorite, chlorate, and perchlorate in explosion residue using IC/MS coupling
Determination of chlorite, chlorate, and perchlorate in explosion residue using anion chromatography with conductivity and MS detection in tandem.
- AN-RS-013Determination of Container Contents
Identification of unknown materials in the field can be a complicated affair, especially in critical situations, where speed, safety, and ease-of-operation are essential. Mira DS, Metrohm Raman’s handheld Raman analyzer, and the intelligent Universal Attachment (iUA) give the user automated Content ID capabilities. Content ID achieves through container identification of unknown materials quickly, easily, and safely.
- AN-S-128Chlorate, nitrate, and perchlorate in firecracker powder
Determination of chlorate, nitrate, and perchlorate in firecracker powder using anion chromatography with conductivity detection after chemical suppression.
- AN-S-147Ten anions in an extract of explosives
Determination of chloride, nitrite, cyanate, azide, nitrate, chlorate, sulfate, thiocyanate, thiosulfate, and perchlorate in an extract of explosives using anion chromatography with conductivity detection after chemical suppression.
- AN-S-395Forensic examination analysis with IC
Forensic institutes examine terrorist attacks and warfare agents via trace detection analysis of the used explosives and their residuals. Of particular importance is the acquisition of «chemical fingerprints» for criminal investigation departments and governmental security agencies. Institutes for public health and environmental protection analyze such compounds that can contaminate the underlying soil and infiltrate ground water.Forensic investigation with ion chromatography (IC) using suppressed conductivity detection allows a sensitive and robust determination of anionic contaminants such as chlorate, thiosulfate, thiocyanate, and perchlorate next to the common inorganic anions over a broad concentration range.
- BWT-4910The Use of Portable and Handheld Raman for Forensic Investigations
Today's Raman instrumentation is faster, more rugged, and less expensive than in the past and the advances in component miniaturization have led to the design of portable devices with extremely high performance designed for field-based investigations. This study focuses on the use of handheld Raman spectroscopy for the characterization and identification of samples encountered in various application areas related to forensic science.
- BWT-4914Raman Spectroscopy Peers Through Packaging
Patented STRaman technology is a new Raman technique that can identify chemical species nondestructively beneath diffusely scattering packaging material such as plastics or tablet coatings.
- BWT-4916See-Through Science
Allowing non-destructive chemical identification through opaque materials, award-winning STRam represents an evolution in Raman technology.
- WP-028Safety in Any Situation – Addressing the needs of first responders
Metrohm Raman presents a unique handheld materials identification system designed to meet the needs of defense and security professionals. Meet Mira DS, the most adaptable Raman analyzer available today. Mira DS was developed directly in response to requests from first responders in the field for a small, rugged, automated materialsidentification system that ensures the safety of the user in any situation.
- WP-033Identifying Narcotics in Complex Samples
A person suspected of possessing a narcotic can be charged with a crime only after the identity of the illicit substanceis confirmed. This confirmation is typically provided by analytical chemists in forensic laboratories and requires highly technical separation and detection methods. Unfortunately, such labs often have deep caseloads that lead to delays in testing. Handheld Raman analyzers bring the reliability and accuracy of lab analysis to first responders in the field, allowing for rapid and accurate identification of street drugs with a white powder appearance. With such tools, demand for forensic analysis can be reduced and enforcement agencies can enforce drug policies with greater safety, speed, and precision.
- WP-070On-site Identification of Improvised Incendiary Devices: Integrated Chemical ID and Decision Guidance with MIRA DS and HazMasterG3®
Handheld Raman is ever evolving. The combination of large libraries, a compact and easy-to-use system, and predictive Hazmat software make MIRA DS a powerful tool for defense and security professionals. Identify on-site materials, get hazard information, and make quick decisions about response to dangerous situations.
- WP-072Fluorescence-free 785 nm material ID with MIRA XTR DS
In this White Paper, you will learn about MIRA XTR DS – the smallest, smartest, most flexible handheld Raman system with the largest libraries available on the market! MIRA XTR DS has all the benefits of 785 nm Raman interrogation: compact size, low laser power, sample preservation, long battery lifetimes... now with fluorescence rejection. Additionally, there is improved sensitivity and resolution over 1064 nm systems. This opens up new possibilities for 785 nm Raman, including strongly colored materials, common excipients, illicit materials, and more.