

Application Note AN-NIR-100

Ash determination in polyethylene

Routine analysis of ash content in PE granulates made simple

In order to improve certain characteristics in polymers, various fillers are added to resins. One important filler in this industry is ash, which mainly consists of silicon, magnesium-, and iron oxide. The ash content can vary in the product (depending on the particle size and the desired properties) from 0.01 wt% to up to 10 wt%. The standard test method for ash content analysis is

thermogravimetric analysis (TGA). Although TGA is easy to perform, it is time-intensive and requires the use of nitrogen gas. In contrast to the primary method, near-infrared spectroscopy (NIRS) is a fast analytical technique which can measure multiple parameters including ash content in polymers within one minute.

154 polyethylene samples with varying ash content from 0.07% to 0.12% were analyzed by NIR spectroscopy on a Metrohm DS2500 Solid Analyzer (Figure 1) equipped with a DS2500 large sample cup. All measurements were performed in rotation to

average the subsample spectra. This setup reduces the influence of the particle size distribution of the polymer pellets. Data acquisition and prediction model development were performed with the software package Vision Air Complete.

Table 1. Hardware and software equipment overview.

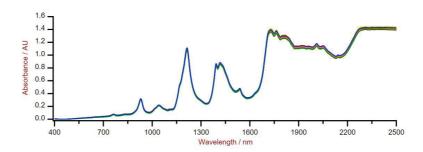
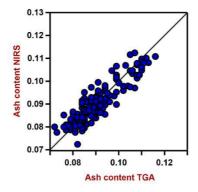

Equipment	Metrohm number
DS2500 Solid Analyzer	2.922.0010
DS2500 large sample cup	6.7402.050
Vision Air 2.0 Complete	6.6072.208

Figure 1. DS2500 Solid Analyzer.


The obtained Vis-NIR spectra (**Figure 2**) were used to create a prediction model for ash content in PE samples. To verify the quality of the prediction model, correlation diagrams were created which display a correlation value (R^2) of 0.77 between the Vis-NIR

prediction and primary method (TGA) values. The respective figures of merit (FOM) display the expected precision of a prediction during routine analysis (Figure 3).

Figure 2. Selection of Vis-NIR spectra of PE samples obtained using a Metrohm DS2500 Solid Analyzer equipped with the DS2500 large sample cup.

RESULTS

Figure 3. Correlation diagram and the respective figures of merit for the prediction of ash content in PE using a DS2500 Solid Analyzer. The lab values were determined using TGA.

Table 2. Figures of merit for the prediction of ash content in PE using a DS2500 Solid Analyzer.

Figures of Merit	Value
R ₂	0.77
Standard Error of Calibration	0.0055%
Standard Error of Cross-Validation	0.066%

CONCLUSION

This Application Note shows the feasibility of NIR spectroscopy for the analysis of low levels of ash content in polyethylene granulates within one

minute. In comparison to the standard method (**Table 3**), the time savings for ash content analysis in PE by using a NIRS analyzer is clear.

Table 3. Time to result with conventional TGA method.

Parameter	Method	Time to result
Ash content	TGA	~2 hours

CONTACT

Metrohm Portugal R. Frei Luis de Granada 14G 1500-680 Lisboa

vendas@metrohm.pt

