Aplicações
- WP-060Multiparameter analysis in fertilizers: Fast and easy via thermometric titration
Agriculture at significant scale without fertilizers is no longer possible in the modern world. To grow a sufficient amount of produce for nearly 8 billion people as well as for domesticated animals and industrial uses, fertilizers of different nutrient compositions are available to cater to the unique needs of various soil types. Information on the fertilizer’s composition (e.g., total nitrogen, phosphorus, and potassium) is available to help select the ideal fertilizer for a specific soil. Conventionally these constituents are determined either gravimetrically (e.g., phosphorus, potassium, or sulfate) or with ICP-OES (e.g., phosphorus or potassium). These methods either have the disadvantages of long analysis times combined with laborious sample preparation (gravimetry), or require expensive instrumentation with high running costs (ICP-OES). This White Paper elaborates how thermometric titration is a fast and inexpensive alternative method to provide information on the content of various nutrients in different fertilizers.
- WP-014High productivity and profitability in IC environmental analysis
Brad Meadows is Vice President and Lab Director at the US company BSK Labs, which runs a number of environmental laboratories and service centers. Brad is an analytical chemist and has been working in the management of analysis laboratories for 15 years. He shared his experiences with Metrohm ion chromatography with us in the form of some concrete facts and figures.
- WP-097Why switch to OMNIS Client/Server (C/S)?
OMNIS Client/Server boosts business performance with scalable server management, cutting costs by reducing hardware, energy use, and maintenance across locations.
- 8.000.6005Hyphenated techniques as modern detection systems in ion chromatography
The coupling of highly efficient ion chromatography (IC) to multi-dimensional detectors such as a mass spectrometer (MS) or an inductively coupled plasma mass spectrometer (ICP/MS) significantly increases sensitivity while simultaneously reducing possible matrix interference to the absolute minimum. By means of IC/MS several oxyhalides such as bromate and perchlorate can be detected in the sub-ppb range. Additionally, organic acids can be precisely quantified through mass-based determination even in the presence of high salt matrices. By means of IC-ICP/MS different valence states of the potentially hazardous chromium, arsenic and selenium in the form of inorganic and organic species can be sensitively and unambiguously identified in one single run.
- 8.000.6021Water analysis
A complete tap water analysis includes the determination of the pH value, the alkalinity and the total water hardness. Both the pH measurement and the pH titration by means of a standard pH electrode suffer from several drawbacks. First, the response time of several minutes is too long and, above all, the stirring rate significantly influences the measured pH value. Unlike these standard pH electrodes, the Aquatrode Plus with its special glass membrane guarantees rapid, correct and very precise pH measurements and pH titrations in solutions that have a low ionic strength or are weakly buffered. Total water hardness is ideally determined by a calcium ion-selective electrode (Ca ISE). In a complexometric titration, calcium and magnesium can be simultaneously determined up to a calcium/magnesium ratio of 10:1. Detection limits for both ions are in the range of 0.01 mmol/L.
- 8.000.6053Trace-level determination of perfluorinated compounds in water by suppressed ion chromatography with inline matrix elimination
This poster describes a simple and sensitive method for the determination of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) in water samples by suppressed conductivity detection. Separation was achieved by isocratic elution on a reversed-phase column thermostated at 35 °C using an aqueous mobile phase containing boric acid and acetonitrile. The PFOA and PFOS content in the water matrix was quantified by direct injection applying a 1000 μL loop. For the concentration range of 2 to 50 μg/mL and 10 to 250 μg/mL, the linear calibration curve for PFOA and PFOS yielded correlation coefficients (R) of 0.99990 and 0.9991, respectively. The relative standard deviations were smaller than 5.8%.The presence of high concentrations of mono and divalent anions such as chloride and sulfate has no significant influence on the determination of the perfluorinated alkyl substances (PFAS). In contrast, the presence of divalent cations, such as calcium and magnesium, which are normally present in water matrices, impairs PFOS recovery. This drawback was overcome by applying Metrohm`s Inline Cation Removal. While the interfering divalent cations are exchanged for non-interfering sodium cations, PFOA and PFOS are directly transferred to the sample loop. After inline cation removal, PFAS recovery in water samples containing 350 mg/mL of Ca2+ and Mg2+ improved from 90…115% to 93…107%.While PFAS determination of low salt-containing water samples is best performed by straightforward direct-injection IC, water rich in alkaline-earth metals are best analyzed using Metrohm`s Inline Cation Removal.
- 8.000.6112Technical Poster: Haloacetic acids in water
LC-MS/MS quantification methods are commonly used to determine trace levels of organic compounds. However, highly polar reversed phases (RPs) lack sufficient retention for very polar compounds, or they fail for charged organics. Separation using ion chromatography (IC) and subsequent MS/MS detection is an innovative alternative approach that combines the fast elution and flexibility of the IC system with the excellent resolution and high sensitivity of the MS/MS detector. This poster presents a fast, robust and reliable IC-MS/MS method for the detection of HAAs and other ionic analytes using the high-end MS/MS system QTRAP 6500+ from SCIEX coupled to a the 940 Professional IC Vario One SeS/PP/HPG instrument. This analytical setup is able to identify and quantify the presence of HAAs at trace levels with LLODs between 0.02 μg/mL and 0.2 μg/L on a single HAA. This capability easily fulfills the sensitivity requirements specified in EU Drinking Water Directive, which specifies a maximum residue level (MRL) of 60 mg/mL for the sum of monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic acid and dibromoacetic acid present in the representative sample.
- TA-044pH value, conductivity and titration in water and soil analysis
The rapid growth of the Earth's population has led to massive increases in the consumption of energy and resources and in the production of consumer products and chemicals. It is estimated that 17 million chemical compounds are currently on the market, of which 100,000 are produced on a large industrial scale. Many of these enter the environment. This leads to a demand for sensitive analytical procedures and high-performance analytical instruments. pH value, conductivity and oxygen requirement are important characteristics in water and soil analysis. The first two of these can be determined rapidly; for the third, the titration that is used is also the one used in numerous single determinations. This article describes several important standard-compliant determinations in water and soil analysis.
- TA-057Chromate in toys, leather and drinking water
Chromate is allergenic, carcinogenic and extremely toxic. It is therefore subject to strict monitoring. It is present in different concentrations in drinking water, toys, textiles, leather and many other materials. Metrohm has developed various methods for ion chromatographic determination of chromium(VI) which, thanks to Inline Sample Preparation, are suitable for a variety of matrices and concentration ranges – from ng/L to mg/L.
- TA-040Automation for the determination of chemical oxygen demand (COD)
In the event of a large number of samples, it makes sense to apply automation to the individual steps of COD determination. This article indicates the extent to which automation can be applied for the determination of chemical oxygen demand with the help of a system especially designed for that purpose.