Aplikace
Aplikace
- 410000012-A01Rapid Detection of the Low Dose API in Xanax Using Surface-Enhanced Raman Spectroscopy for Anti-Counterfeiting Purposes
The emergence of counterfeit prescription drugs has become a concern for the pharmaceutical industry. Because of the low concentrations of APIs found in pharmaceutical drugs, normal Raman spectroscopy is typically not sensitive enough to detect the API from the surface of a pill. In this study we develop a surface-enhanced Raman spectroscopy (SERS)-based approach to identify a low-dose of the API alprazolam in a Xanax tablet using a handheld Raman spectrometer. If no SERS peaks consistent with alprazolam are observed from a Xanax tablet, the pill is a suspected fake. The method demonstrates the power of SERS to quickly verify the presence of alprazolam in the tablet for anti-counterfeiting purposes.
- 410000030-APortable Transmission Raman Spectroscopy for At-Line Content Uniformity Testing of Pharmaceutical Tablets
Analytical methods to perform CU testing should ideally be fast, noninvasive and achieved with limited sample preparation. Recently, transmission near-infrared (NIR) spectroscopy and transmission Raman spectroscopy have both been explored as alternative methods for rapid and non-destructive on- and at-line CU testing with no sample preparation. Although quick and nondestructive, transmission NIR spectroscopy suffers from poor chemical selectivity and is sensitive to changes in the testing environment. Transmission Raman spectroscopy combined with chemometric modeling is quickly emerging as a valued technique for CU testing due to its high chemical specificity, which is particularly useful when dealing with complex pharmaceutical formulations that contain multiple components.
- 410000039-AQuantitative Analysis of Solutions Using a High Resolution Portable Raman Spectrometer
Ternary mixtures of aqueous sugar solutions are measured and multivariate models of the concentration of analytes developed using BWIQ software.
- 410000046-AQTRam® for Content Uniformity Analysis of Low-Dose Pharmaceutical Tablets
In this note, we use a model drug, acetaminophen, to demonstrate the capability of QTRam® to quantify low concentrations of API in compressed tablets.QTRam® is a compact transmission Raman analyzer designed specifically for content uniformity analysis of pharmaceuticals in solid dosage forms.
- 8.000.6010Inline sample preparation – An effective tool for ion analysis in pharmaceutical products
By means of azide analysis in Irbesartan a simple, fast, precise and accurate ion chromatographic method for the determination of traces of inorganic contaminants in pharmaceuticals is described. Traces of toxic azides in pharmaceutical products can accurately be determined in the sub-ppb range after Metrohm Inline Matrix Elimination using isocratic ion chromatography (IC) with suppressed conductivity detection. While the azide anions are retained on the preconcentration column, the interfering pharmaceutical matrix is washed away by a transfer solution, ideally consisting of 70% methanol and 30% ultrapure water. The analytical setup provides a well-resolved azide peak and thus alleviates the common drawback of excipient interferences, especially from the nitrate anion. Calibration with azide standards is linear over the range of 5…80 ppb, providing a coefficient of determination of 0.9995. The limit of detection (LOD) and the limit of quantification (LOQ) of azide in Irbesartan are 5 and 30 µg/L respectively; the relative standard deviations (RSD) for the peak area, peak height and retention time being smaller than 3.9%. Robustness testing involved variation of column oven temperature and composition of the transfer solution and, in terms of peak area, provided RSDs smaller than 2.8% and 3.1% respectively.
- 8.000.6024Fully automated sample preparation for the content determination of tablets
Benzbromaron is one of the main uricosuric drugs currently used. In addition to sophisticated and expensive LC-MS and GC-MS methods, benzbromaron can be effectively determined by titration with sodium hydroxide solution using a straightforward, fully automated sample preparation method. A high-frequency homogenizer comminutes one or three tablets within 90 or 120 s respectively. The overall analysis time is 8 minutes. Ten-fold determinations with one and three tablets resulted in a benzbromaron content of 99.2 and 98.7 mg per tablet respectively. Increasing the number of tablets from one to three lowers the RSD from 1.36 to 0.88%. These results show an excellent agreement with the benzbromaron content indicated by the manufacturer (approx. 100 mg/tablet).Besides the presented Titrando/homogenizer combination, the other two members of the 815 Robotic Soliprep Sample Processor family offer comprehensive sample preparation possibilities within the fields of IC, HPLC, ICP or voltammetry.
- 8.000.6026Determination of the water content in tablets by automated Karl Fischer titration
The water content of tablets determines the release of their active ingredients as well as their chemical, physical, microbial and shelf-life properties. Accordingly, the water content is of crucial importance and has to be accurately determined. This paper describes the straightforward determination of the water content using automated volumetric Karl Fischer titration (KFT). Tedious sample preparation steps are eliminated by using a high-frequency homogenizer that additionally serves as a stirrer. Prior to titration, the homogenizer comminutes the tablets directly in the KF solution. As the comminution process takes place directly in the hermetically sealed titration vessels, interference from atmospheric humidity does not occur. Even after 24 h in the vessels, the moisture content of four different tablet type samples was within 93…108% of the initially determined values. With a coefficient of determination of 0.99993 the KF method is highly linear for water amounts between 4 and 215 mg. For all investigated tablet types, KFT provides results that lie within the range expected by the manufacturer.
- 8.000.6051PC-controlled dosing and liquid handling
The 800 Dosino controlled by tiamo™ or Touch Control can be used universally for dosing and liquid handling tasks in both the analytical laboratory or directly in the synthesis laboratory. This poster looks at three typical liquid handling applications, the synthesis of metal-organic compounds, the preparation of standards, and the determination of pharmaceutical ingredients.
- 8.000.6078Water determination in pharmaceuticals using an automated Karl Fischer Oven Technique
The poster describes the water determination in pharmaceuticals using the Karl Fischer oven technique.
- 8.000.6089Automated sample measurement in Karl Fischer titration
This poster describes a method for automated and precise dosing of liquid samples into the Karl Fischer titration cell using Metrohm Dosino liquid handling technology. First, the titer was automatically determined with ultrapure water. The same dosing procedure proved valuable for the automated water determination in highly viscous water-glycol fluids and low-boiling organic solvents such as n-pentane. Lastly, the method copes with the labor-intensive and human error-prone suitability test stipulated in chapter 2.5.12 in the European Pharmacopoeia.
- 8.000.6102Ion chromatography – the all-rounder for pharmaceutical analysis
Pharmaceutical analysis guarantees drug safety by providing information on the identity, content, quality, purity, and stability of pharmaceutical products using analytical chemistry. Ion chromatography (IC) offers a broad range of pharmacopeia-compliant applications for quality control, monitoring, and improving drug manufacturing.As a very accurate and versatile technique, IC meets the requirements of many pharmaceutical applications. IC is a USP-accepted standard method for the determination of active pharmaceutical ingredients (APIs), excipients, impurities,pharmaceutical solutions as well as pharmaceutical starting materials, finished pharmaceutical products (FPPs) and even body fluids.This poster describes some typical examples.
- 8.000.6105Selective and Sensitive determination of Zinc in Various OTC formulations as per USP <591>
This poster presented jointly with USP at AAPS meeting shows the new USP method for zinc as per <591> using Ion Chromatography which is highly selective and sensitive. Selectivity is achieved by separation and further improved with PCR reaction. Sensitivity and wide linear quantification limit make the new USP method ideal for QA/QC. Automated PCR delivery makes the overall method performance easy to validate.
- 8.000.6106Potassium Assay in OTC Drug Products by Ion Chromatography
This poster presented jointly with USP at AAPS meeting shows, that we successfully developed and validated a single IC procedure for potassium assay and identification in potassium bicarbonate and potassium chloride for effervescent oral suspension. The optimized chromatographic conditions could be used for other cationic impurities, such as magnesium, calcium, sodium, and ammonium in potassium bicarbonate and potassium chloride for effervescent oral suspension. Single chromatographic method for assay and identification simplifies the overall QA/QC workflow.
- 8.000.6110Fluoride in OTC Products by Ion Chromatography
Fluoride is commonly used in dental products to help prevent tooth decay. When fluoride is present in high concentrations, these products are regulated by 21 CFR 355. Three fluoride compounds used in over the counter (OTC) anti‐cavity dental products are sodium fluoride, stannous fluoride and sodium monofluorophosphate (MFP). The assay of fluoride in these active ingredients and finished formulations are determined by manual titration, or by ion‐selective electrodes. As a part of USP’s global monograph modernization initiative, an alternative selective and sensitive method has been developed and validated – ion chromatography (IC). The proposed IC method can also be used for the identification test as an alternative to the wet chemistry method.
- AB-074Determination of antimony, bismuth, and copper by anodic stripping voltammetry
This Application Bulletin describes the voltammetric determination of the elements antimony, bismuth, and copper. The limit of detection for the three elements is 0.5 ... 1 µg/L.
- AB-077Volumetric water content determination according to Karl Fischer – Tips and tricks for volumetric Karl Fischer titration
This Application Bulletin gives an overview of the volumetric water content determination according to Karl Fischer. Amongst others, it describes the handling of electrodes, samples, and water standards. The described procedures and parameters comply with the ASTM E203.
- AB-098Determination of ascorbic acid (Vitamin C) and its compounds
In addition to its natural occurrence in fruit and vegetables, ascorbic acid (Vitamin C) is used as an antioxidant in foods and drinks. Ascorbic acid is furthermore also to be found in numerous drugs.Ascorbic acid and its salts and esters can be determined with titration or by using polarography, for which ascorbic acid is oxidized to form dehydroascorbic acid.Bi-voltammetric or photometric equivalence point indication can be used for titrimetric determination. It must be taken into account here that only bi-voltammetric indication is independent of the inherent color of the sample. Polarography is the most selective of the methods described, as other reducing or oxidizing substances are not recorded.
- AB-101Complexometric titrations with the Cu ISE
This Bulletin describes the complexometric potentiometric titration of metal ions. An ion-selective copper electrode is used to indicate the endpoint of the titration. Since this electrode does not respond directly to complexing agents, the corresponding Cu complex is added to the solution. With the described electrode, it is possible to determine water hardness and to analyze metal concentrations in electroplating baths, metal salts, minerals, and ores. The following metal ions have been determined: Al3+, Ba2+, Bi3+, Ca2+, Co2+, Fe3+, Mg2+, Ni2+, Pb2+, Sr2+, and Zn2+.
- AB-130Chloride titrations with potentiometric indication
Potentiometric titration is an accurate method for determining chloride content. For detailed instructions and troubleshooting tips, download our Application Bulletin.
- AB-134Determination of potassium with an ion-selective electrode
Potassium is one of the most common elements and can be found in many different minerals and other potassium compounds. It is of importance for humans, animals and plants as it is an essential mineral nutrient and involved in many cellular functions like cell metabolism and cell growth. For these reasons, it is important to be able to declare the potassium content of food or soil to reduce problems that may arise by a potassium deficiency or extensive consumption.This bulletin describes an alternative to flame photometric method using an ion selective electrode and direct measurement or standard addition technique. Several potassium determinations in different matrices using the combined potassium ion-selective electrode (ISE) are presented here. Additionally, general hints, tips and tricks for best measurement practice are given.
- AB-137Coulometric water content determination according to Karl Fischer
This Application Bulletin gives an overview of the coulometric water content determination according to Karl Fischer.Amongst others, it describes the handling of electrodes, samples, and water standards. The described procedures and parameters comply with the ASTM E1064.
- AB-140Titrimetric sulfate determination
This Bulletin describes three potentiometric, one photometric, one thermometric and one conductometric titration method for sulfate determination. The question of which indication method is the most suitable depends primarily on the sample matrix.Method 1: Precipitation as barium sulfate and back titration of the Ba2+ surplus with EGTA. Use of the ion-selective calcium electrode as indicator electrode.Method 2: As with Method 1, although with the electrode combination tungsten/platinum.Method 3: Precipitation titration in semi-aqueous solution with lead nitrate in accordance with the European Pharmacopoeia using the ion-selective lead electrode as indicator electrode.Method 4: Photometric titration with lead nitrate, dithizone indicator and the Optrode 610 nm, particularly suitable for low concentrations (up to 5 mg SO42- in the sample solution).Method 5: Thermometric precipitation titration with Ba2+ in aqueous solution, particularly suitable for fertilizers.Method 6: Conductometric titration with barium acetate in accordance with DIN 53127
- AB-181Automatic potentiometric titration of aluminum and magnesium in the same solution
Mixtures of aluminum and magnesium ions can be analyzed automatically using potentiometric titration. The excess DCTA is back-titrated with copper(II) sulfate solution after the addition of 1,2-diaminocyclohexanetetraacetic acid (DCTA) and complex formation. The ion-selective copper electrode is used here as the indicator electrode. First, the aluminum is determined in acidic solution and then the magnesium in alkali solution.
- AB-199Determination of sulfide and sulfite by polarography
Sulfide and sulfite can be determined polarographically without any problems. For sulfide, polarography is performed in an alkaline solution, for sulfite in a slightly acidic primary solution. The method is suitable for the analysis of pharmaceuticals (infusion solutions), wastewater/flue gas water, photographic solutions, etc.
- AB-213Determination of nicotinamide by polarography
This Application Bulletins describes the determination of nicotinamide (vitamin PP), a vitamin of the B series. Instructions for the determination in solutions (e.g. fruit juice), vitamin capsules and multivitamin tablets are given. The linearity range of the determination is also specified. The limit of detection is approximately 50 μg/L nicotinamide.
- AB-215Determination of folic acid by polarography
This Application Bulletin describes the polarographic determination of folic acid, a vitamin of the B series, also known as vitamin B9 or vitamin BC. Instructions for the determination in solutions (e.g. fruit juice), vitamin capsules and multivitamin tablets are given. The linear range of the determination is also specified. The limit of detection is approx. 75 µg/L folic acid.
- AB-218Determination of thiamine (vitamin B1) by polarography
This Application Bulletins describes the polarographic determination of thiamine (vitamin B1). The procedure allows an analysis in monovitamin preparations. The linear range of the determination is also given. The limit of detection is approx. 50 µg/L thiamine.
- AB-219Determination of riboflavin (vitamin B2) by polarography
This Application Bulletin describes the polarographic determination of riboflavin (vitamin B2). The procedure allows an analysis in monovitamin preparations. The limit of determination is approx. 100 μg/L.
- AB-250Polarographic determination of diazepam in body fluids and pharmaceutical preparations
Diazepam belongs to the 1,4-benzodiazepine group of compounds, which are used for medical purposes as tranquilizers and antidepressants. This Bulletin describes the determination of diazepam in tablets and body fluids (blood, serum, urine) by means of differential pulse polarography. If a Britton-Robinson buffer pH = 2.8 with a methanol volume fraction of 20% is used as the supporting electrolyte then a pronounced reduction peak is obtained at -0.73 V; this allows diazepam concentrations even below 0.05 µg/mL to be determined in blood. The necessary sample preparation steps are also dealt with in this Bulletin.
- AB-251Polarographic determination of cinchocaine (dibucaine) in pharmaceutical preparations
Cinchocaine (dibucaine) is used in the form of ointments or injection solutions as a local anaesthetic. Its base is soluble in diethyl ether; its hydrochloride, on the other hand, is insoluble in diethyl ether but easily soluble in water. This Bulletin describes the determination of cinchocaine in ointments, creams and injection solutions by means of differential pulse polarography. An acetate buffer pH = 4.8 is used as the supporting electrolyte. The limit of quantitation and the linear working range of the method are given. The necessary sample preparation steps are also dealt with in this Bulletin.
- AB-268Potentiometric titration of surfactants and pharmaceuticals – an overview
The present Bulletin offers an overview of the multitude of surfactants and pharmaceuticals that can be determined with potentiometric titration. Metrohm provides five different surfactant electrodes for indicating the titration endpoint: the Ionic Surfactant, the High Sense, the Surfactrode Resistant, the Surfactrode Refill and the NIO Surfactant electrode. The manufacture of the respective titrants and their titer determination are described in detail. In addition to this, the Bulletin contains a tabular overview of more than 170 proven applications from the area of surfactant and pharmaceutical analysis. This guideline leads you reliably to your destination: At a glance you can see from the table which surfactant electrode and which titrant are optimally suitable for your product.
- AB-280Automatic Karl Fischer water content determination with the 874 Oven Sample Processor
Generally speaking, the gas extraction or oven method can be used for all samples which release their water when they are heated up. The oven method is indispensable in cases in which the direct volumetric or coulometric Karl Fischer titration is not possible, either because the sample contains disruptive components or because the consistency of the sample makes it very difficult or even impossible to transfer it into the titration vessel.The present Application Bulletin describes automatic water content determination with the aid of the oven technique and coulometric KF titration, using samples from the food, plastic, pharmaceutical and petrochemical industry.
- AB-358Analysis of residual moisture in a lyophilized pharmaceutical product by near-infrared spectroscopy (NIRS)
This Application Bulletin describes the method of near-infrared spectroscopy in diffuse reflection for the purpose of determining residual moisture in a lyophilized pharmaceutical product. Numerous sample vials containing freeze-dried pharmaceuticals were spiked with varying amounts of water for calibration purposes. The resulting differences in the absorption wavelengths of the OH-oscillation were correlated with the water content determined by Karl Fischer titration using the algorithm of multiple linear regression (MLR).
- AB-407Automated volumetric Karl Fischer titration with MATi 10
This Application Bulletin provides information regarding the MATi 10 (Metrohm Automated Titration) system. MATi 10 is a completely configured system for automatic volumetric Karl Fischer titration with which the water content in liquid and solid samples can be determined. Up to 24 samples can be analyzed directly in 75 mL titration vessels. The samples are weighed into the titration vessels and covered with an aluminum foil. This prevents falsification of the water content.
- AB-410Pharmaceutical analysis using near-infrared spectroscopy
The present Application Bulletin contains NIR applications and feasibility studies using NIRSystems devices in the pharmaceutical industry. Qualitative and quantitative analyses of a wide variety of samples are part of this bulletin. Each application describes the instrument that was originally used for the analysis, as well as the system recommended for the analysis and the results that were achieved thereby.
- AB-417Automated volumetric Karl Fischer titration using MATi 11
MATi 11 (MATi = Metrohm Automated Titration) is a completely configured system for water content determination in solid or liquid samples using automated volumetric Karl Fischer titration. It contains a Polytron PT 1300 D for the homogenization of the samples. Up to 53 samples are analyzed directly in 120 mL titration beakers. The samples are weighed in the titration beaker and sealed with aluminum foil and a foil holder so that they neither lose nor absorb water.
- AB-423Improvement of optical focusing properties in mobile Raman systems for pharmaceutical analysis
This Application Bulletin compares the unique focusing technology of the portable Metrohm Raman system "Mira" with conventional methods. The method described here is called Orbital Raster Scan (ORS). Experiments show the advantages of ORS technology, using determination and quantification of medicines as an example. It improves the reproducibility of the Raman signals from targeted, active, pharmaceutical ingredients (APIs) in effervescent, cold medicines. Shorter analysis times and an improved, consistent assignment of spectra of the known medicine with the help of a spectral library are further advantages of ORS technology.
- AB-428Automatic conductometry in water samples with low electrical conductivity in accordance with USP<645>
This Bulletin describes the automatic measurement of conductivity in water samples with low electrical conductivity in accordance with USP<645>. Conductivity measurement is demonstrated on the example of ultrapure water, which is used, among other things, to produce injection solutions in the pharmaceutical sector.
- AN-C-022Sodium, potassium, calcium, and magnesium in a drip feeding formula using dialysis for sample preparation
Determination of sodium, potassium, calcium, and magnesium in a drip feeding formula using cation chromatography with direct conductivity detection and dialysis as sample preparation.
- AN-C-085Betaine in an Echinacea product
Determination of betaine in the presence of standard cations in an Echinacea product using cation chromatography with direct conductivity detection.
- AN-C-086Zinc and standard cations in infusion solutions
Determination of zinc, sodium, potassium, magnesium, and calcium in an infusion solution using cation chromatography with direct conductivity detection.
- AN-C-109Trans-4-methylcyclohexylamine in a pharmaceutical product
Determination of trans-4-methylcyclohexylamine in a pharmaceutical product using cation chromatography with direct conductivity detection.
- AN-C-119Bethanechol chloride and calcium in tablets (Metrosep C 4 - 150/4.0)
Determination of Bethanechol chloride and calcium in tablets using cation chromatography with direct conductivity detection.
- AN-C-127Benzylamine in a beta blocker
Determination of benzylamine in a beta blocker (Nebivolol) using cation chromatography with direct conductivity detection. A step gradient for fast elution of the main component is applied.
- AN-C-178Aspartic acid, glutamic acid, TRIS, sodium, and potassium in cardioplegic solution
A cardioplegic solution protects the ischemic myocardium from cell death. It is applied together with hypothermia e.g. in open heart surgery. Here the simultaneous determination of aspartic acid, glutamic acid, tris(aminomethyl)aminomethane (TRIS), sodium and potassium in such a solution is given. The two amino acids can be determined as they are partially in the triple protonated ammonium form at the eluent pH. Determination is achieved by direct conductivity detection.
- AN-C-183Potassium in potassium bicarbonate effervescent tablets for oral solution
Within the scope of the USP monograph modernization, potassium is determined in potassium bicarbonate effervescent tablets for oral suspension applying cation chromatography with direct conductivity detection. The separation is performed on a Metrosep C 6 - 150/4.0 column (L76). All acceptance criteria are fulfilled.
- AN-C-184Potassium and sodium bicarbonates and citric acid effervescent tablets for oral solution
As an alternative to flame photometry, ion chromatography with non-suppressed conductivity detection has been approved by the USP as a validated method to quantify potassium and sodium content in potassium and sodium bicarbonates and citric acid effervescent tablets for oral solution. The present IC method has been validated according to USP General Chapter <621>.
- AN-C-185Potassium in potassium bicarbonate and potassium chloride effervescent tablets for oral solution
As an alternative to flame photometry, ion chromatography with non-suppressed conductivity detection has been approved by the USP as a validated method to quantify potassium content in potassium bicarbonate and potassium chloride effervescent tablets for oral solution. The Metrosep C 6 - 150/4.0 column (L76) provides the required separation of potassium and magnesium. The present IC method has been validated according to USP General Chapter <621>.
- AN-C-194IC Assays for Calcium and Magnesium according to USP
Calcium carbonate has a wide applicability in the pharmaceutical industry as an excipient and also as an active ingredient, and in the food industry as a major dietary supplement. The U.S. Pharmacopoeia (USP) monographs for calcium and magnesium carbonates tablets as well as calcium carbonate and magnesia chewable tablets currently describe manual titration as the assay procedure for calcium and magnesium. The USP has embarked on a global initiative to modernize many of the existing monographs across all compendia. In response to this initiative, two alternative analytical methods were developed to determine the analytes calcium and magnesium. This Application Note presents ion chromatography (IC) procedures using conductivity detection that provide better accuracy and specificity and are suitable for the intended purpose. These validated IC methods (according to USP General Chapter <1225>) offer a significant improvement to the existing assays because they can simultaneously determine both analytes calcium and magnesium, saving both time and effort.
- AN-C-197Potassium assay in potassium citrate and citric acid oral solution
Potassium citrate and citric acid oral solutions act as systemic alkalizers. Potassium assays, validated per USP <621> and <1225>, use IC with L76 cation-exchange columns.