Aplikace
Aplikace
- 410000059-BCharacterization of carbon materials with Raman spectroscopy
Raman spectroscopy is a valuable tool for the characterization of carbon nanomaterials due to its selectivity, speed, and ability to measure samples nondestructively. Carbon materials typically have simple Raman spectra, but they contain a wealth of information about internal microcrystalline structures in peak position, shape, and relative intensity.
- AB-434Water in lithium ion battery materials – Reliable and precise determination by Karl Fischer titration
Lithium-ion batteries must be completely free of water (concentration of H2O < 20 mg/kg), because water reacts with the conducting salt, e.g., LiPF6, to form hydrofluoric acid.The water content of several materials used in lithium ion batteries can be determined reliably and precisely by coulometric Karl-Fischer titration. In this Application Bulletin the determination for the following materials is described:raw materials for the manufacture of lithium-ion batteries (e.g., solvents for electrolytes, carbon black/graphite); electrode coating preparations (slurry) for anode and cathode coating; the coated anode and cathode foils as well as in separator foil and in the combined material; electrolytes for lithium-ion batteries;
- AN-BAT-001High voltage measurements: Characterization of NiMH batteries with Autolab PGSTAT302N in combination with voltage multiplier
A nickel metal hydride battery, abbreviated NiMH, is a type of rechargeable battery similar to a nickel-cadmium (NiCd) battery but, for the anode, instead of cadmium, it has a hydrogen absorbing alloy. Like in NiCd batteries, nickel is the cathode. The voltage output of such packs is directly proportional to the number of single cells in the pack. In some cases, the total voltage can exceed the maximum of 10 V that is measurable by the Autolab potentiostat/galvanostat. To apply and measure voltages greater than 10 V, we have developed a voltage multiplier that increases the voltage range of the Autolab.
- AN-BAT-002Galvanostatic charge-discharge of a Li-ion battery with Autolab
Lithium-ion (Li-ion) batteries are one of the most important energy storage devices in the market. A typical Li-ion battery is usually composed of one or more cells. Characterization of Li-ion cells and batteries usually involves the galvanostatic charge and discharge during various cycles.
- AN-BAT-003Galvanostatic intermittent titration technique (GITT) for Li-ion batteries
This Application Note outlines GITT, a key technique for studying Li-ion battery kinetics, OCV, and diffusion, using INTELLO for streamlined control and analysis.
- AN-BAT-004Potentiostatic intermittent titration technique (PITT)
During charge and discharge of a Li-ion battery, lithium ions are transported from one electrode through the electrolyte to the other electrode. Knowing the chemical diffusion coefficient of electrode materials is crucial. The potentiostatic intermittent titration technique (PITT) is one of the most used techniques to retrieve insights on the diffusion coefficient of the electrode active materials.
- AN-BAT-006Determination of the MacMullin number
The main components of a battery are the positive and negative electrodes, together with the electrolyte, which provides only the ionic conductivity. The most common electrolytes are in the liquid state. Therefore, a separator is needed to provide a physical separation between the electrodes. The separator is soaked with electrolyte. The MacMullin number is a parameter used to determine the quality of a separator, in terms of ionic conductivity, when soaked with an electrolyte. The MacMullin number can be calculated, using the results of data fitting of two EIS experiments and the geometric factors of the measurement cells. In this application note, a commercial electrolyte is employed, together with a porous filter, used as a separator.
- AN-BAT-007Simple CV and EIS test measurements carried out with electrochemical cells for air or moisture sensitive measurements
The TSC SW closed and TSC battery cells are compact systems designed for measurement of air or moisture sensitive materials, such as those materials used in rechargeable batteries. These cells offer well-controlled environment for the in-temperature measurement of solid and gel like materials in contact with metal electrodes in planar geometry. For example, battery active materials, ionically conductive solid-state electrolytes and battery separators can be tested using these cells. In this experiment, standard resistors of 100 Ω are used in both cells to understand the cell effects, if any, on the measurements.
- AN-BAT-008Metrohm Autolab DuoCoin Cell Holder with EIS measurements on a commercial battery
The DuoCoin Cell Holder is introduced. EIS measurements on a commercial coin cell battery are performed. Differences in impedance between the four-terminal configuration and two-terminal configuration is highlighted, putting in evidence the importance of having a direct four-terminal configuration, when low-impedance DUTs are investigated.
- AN-BAT-009Determination of the binary diffusion coefficient of a battery electrolyte
In this application note, we demonstrate how to determine the binary diffusion coefficient of a commercial liquid binary lithium ion battery electrolyte based on a galvanostatic pulse polarization method.
- AN-BAT-010Investigation of the Solid Electrolyte Interface Structure and Kinetics.
This application note presents the experimental details and an overview of the most important findings from the EIS and CV experiment to study the structure of a model solid electrolyte interface forming on a planar glassy carbon electrode in contact with a typical organic battery electrolyte.
- AN-BAT-011Determination of the Through-Plane Tortuosity of Battery Electrodes by EIS in a symmetric Lithium-iron-phosphate cell
In this application note, we demonstrate how to determine the through-plane tortuosity τ of a commercial lithium ion battery cathode material with known porosity and coating thickness, based on the electrochemical impedance spectroscopy (EIS) method.
- AN-BAT-012Determination of the Lithium Ion Transference Number of a Battery Electrolyte by VLF-EIS
In this application note, we demonstrate how to determine the lithium ion transference number of a commercial liquid binary lithium ion battery electrolyte, based on the very-low-frequency electrochemical impedance spectroscopy (VLF-EIS) method.
- AN-BAT-013Simultaneous EIS measurements of a Li-ion battery cathode and anode
In battery research, electrochemical impedance spectroscopy (EIS) is a necessary tool to investigate the processes occurring at the electrodes. With a common three-electrode battery, EIS can be performed sequentially first at one electrode and then at the other electrode.
- AN-BAT-014Constant current constant voltage (CCCV) cycling with INTELLO
This Application Note explains how researchers can determine the underlying chemistry and potential failure mechanisms from cycle testing batteries with INTELLO.
- AN-BAT-015Differential capacity analysis (DCA) for battery research with INTELLO
This Application Note discusses differential capacity analysis (DCA) and its impact on enhancing battery performance, with a focus on using the INTELLO platform.
- AN-BAT-016EIS at different states of charge with INTELLO
This application shows how EIS, combined with INTELLO and NOVA, tracks changes in internal battery resistance across SOC levels to study performance and aging mechanisms.
- AN-C-063Five cations in lithium bromide using post-column reaction
Determination of nickel, zinc, cobalt, iron(II), and manganese in lithium bromide using cation chromatography with UV/VIS detection (520 nm) after post-column reaction with PAR.
- AN-C-189Cations in lithium ore
The exploration and processing of lithium ores is gaining importance with the growing demand for lithium hydroxide. Lithium hydroxide is a key component in the manufacturing of rechargeable batteries for use in various applications including electric vehicles, home storage systems, power tools and consumer electronics. To ensure the efficiency for advanced processing of high purity lithium hydroxide, a fast and reliable quantitative detection technique is required. This application has been developed to monitor the lithium, sodium, and calcium content in the lithium processing samples and mineral concentrates.
- AN-CS-011Cation traces in lithium hexafluorophosphate
Lithium hexafluorophosphate (LiPF6) is used as an electrolyte in rechargeable batteries. Its high solubility in non-polar solvents and its non-coordinating character in particular make lithium hexafluorophosphate the ideal salt for use in lithium-ion cells. This Application describes the determination of cation traces in LiPF6 with conductivity detection following sequential suppression.
- AN-EC-003Ohmic Drop Part 1 – Basic Principles
This application explains ohmic iR drop in electrochemical cells, its causes, and strategies to minimize its impact for accurate and reliable potential measurements.
- AN-EC-010In-temperature ionic conductivity measurements with the Autolab Microcell HC setup
To improve the performance of electrochemical energy storage devices like batteries and supercapacitors, one can focus on enhancing the ion conductivity (ƠDC) of the electrolyte. It is a common method for obtaining ƠDC values of different electrolyte systems, to carry out electrochemical impedance spectroscopy (EIS) experiments, at different temperatures, in a 2-electrode setup.
- AN-EC-013The importance of using four-terminal sensing for EIS measurements on low-impedance systems
In this application note, electrochemical impedance spectroscopy (EIS) is used to test a commercial battery connected in two different ways. In the first EIS measurement, the battery is connected in a two-terminal sensing configuration. In the second EIS measurement, the battery is connected in a four-terminal sensing (Kelvin sensing) configuration. The difference in how the leads are connected results in different measured impedance values for the battery.
- AN-EC-017Cyclic Voltammetry and Electrochemical Impedance Spectroscopy measurements carried out with the Microcell HCsetup – the TSC SW Closed and the TSC Battery cells
The TSC SW Closed and TSC Battery cells are compact systems designed for measurements on air or moisture-sensitive materials, such as those used in batteries. In this document, two testing procedures are explained. The first procedure is withpotentiostatic cyclic voltammetry (CV), while the second is via electrochemical impedance spectroscopy (EIS).
- AN-EC-018Electrochemical Impedance Spectroscopy of a Commercial Battery with different Types of Connections
The way low-impedance devices, like fuel cells and battery, are connected to a load influences their performances. In this document, a comparison of EIS results on a commercial Li-ion battery is shown. Different EIS measurements have been performed, changing the way the battery has been connected to the potentiostat.
- AN-EC-020Calculation of Cell Constants using the Autolab Microcell HC TSC70 and TSC1600
In order to calculate the conductivity of an electrolyte, the cell constant of the cell must be known. The combination of the Metrohm Autolab PGSTAT204 equipped with the FRA32M module in combination with the Autolab Microcell HC setup was used for the determination of the conductivity cell constants of TSC1600 temperature controlled electrochemical cell.
- AN-EIS-001Electrochemical impedance Spectroscopy (EIS) Part 1 – Basic Principles
Electrochemical impedance spectroscopy (EIS) is a widely used multidisciplinary technique for characterizing the behavior of complex electrochemical systems. EIS is employed in the study of a range of complex systems including batteries, catalysis, and corrosion processes. This Application Note focuses on the basic principles of EIS measurements.
- AN-EIS-003Electrochemical Impedance Spectroscopy (EIS) Part 3 – Data Analysis
Here, the most common circuit elements for EIS are introduced which may be assembled in different configurations to obtain equivalent circuits used for data analysis.
- AN-PAN-1058Online determination of lithium in brine streams with ion chromatography
Lithium is a soft alkali metal that is typically obtained from salt lake brines. Lithium is used for many applications, but especially for production of lithium-ion batteries in electric cars, mobile phones, and more. This Process Application Note presents a method to monitor lithium as well as other cations in brines by online process ion chromatography (IC), a multiparameter analytical technique that can measure ionic analytes in a wide range of concentrations.
- AN-RA-002The carbon battle characterization of screen-printed carbon electrodes with SPELEC RAMAN
Carbon materials are a remarkable choice as electrode surfaces. They are not only cost-effective and chemically inert, but also have a low background current and a wide potential window. Physical and chemical properties of new carbon nanomaterials depend mainly on their structure, so their characterization is essential to choose the right material for different applications.Raman spectroscopy is a very attractive technique for this purpose, effortlessly distinguishing information about the bond structure of carbon materials, and, therefore, about their possible properties. DropSens screen-printed electrodes (SPEs) are low-cost, disposable devices, available with working electrodes fabricated in several carbon materials. This Application Note describes how their properties can be studied by Raman spectroscopy.
- AN-RA-009Comparison of SPELEC RAMAN and standard Raman microscopes
This Application Note compares SPELEC RAMAN and a standard Raman instrument by analyzing their performance in measuring single-walled carbon nanotubes (SWCNT).
- AN-RS-042Revealing battery secrets with EC-Raman solutions
Electrochemical Raman (EC-Raman) spectroscopy enhances comprehension of energy storage devices by tracking physicochemical changes. This note details EC-Raman findings during nickel-metal hydride (NiMH) battery charge and discharge simulations.
- AN-S-372Analysis of Li-ion battery electrolytes with ion chromatography
Lithium-ion (Li-ion) battery electrolyte quality is essential for performance, stability, and safety reasons. Ion chromatography is an accurate method for electrolyte analysis.
- AN-T-181Lithium in brine
Lithium is a soft metal which is used for many applications, such as production of high-temperature lubricants or heat-resistant glass. Furthermore, lithium is used in large quantities in for battery production. It is obtained from brines and high-grade lithium ores. Depending on the lithium concentration, extraction may or may not be economically viable.This Application Note demonstrates a method to determine the lithium concentration in brines by potentiometric titration. Lithium and fluoride precipitate in ethanol as insoluble lithium fluoride. Using ammonium fluoride as the titrant and a fluoride ion-selective electrode (ISE), determination via potentiometric titration is possible. This method is more reliable, faster, and less expensive than the determination of lithium in brine by other more sophisticated techniques such as atomic absorption spectroscopy (AAS).
- AN-T-215Assay of lithium hydroxide and lithium carbonate
Lithium salts (e.g., lithium carbonate and lithium hydroxide) are used in myriad applications. Lithium hydroxide is used for the production of lithium stearate, an important engine lubricant. In addition, it is utilized as an air purifier due to its ability to bind carbon dioxide. While the majority of lithium carbonate is used for aluminum production, it is also used for the glass and ceramic industry. It lowers the melting point of these materials, lowering the associated electricity costs and making it cheaper to produce them.For all of these applications, it is important to know the quality of the pure lithium salts used in the various production processes. This Application Note presents an easy method for the assay of lithium hydroxide and lithium carbonate on an automated OMNIS system.
- AN-T-216Assay of lithium nitrate
Lithium nitrate is an oxidizing agent used in the manufacture of red-colored fireworks and flares. In addition, the lithium nitrate trihydrate compound absorbs heat well and can be used for thermal energy storage. Since lithium nitrate is a hygroscopic substance, its purity must first be verified before it is used for synthesis or other applications. The purity assay is done by a fully automated precipitation titration between lithium and fluoride in an ethanolic solution. The benefit of titration is that the lithium nitrate does not need to be diluted after dissolving in ethanol as with other techniques such as ICP-MS.
- AN-T-218Analysis of Li-ion battery cathode materials made from Co, Ni, and Mn
The lithium-ion battery market is continuously growing due to the tremendous demand for battery powered consumer products. So-called «NCMs», a mixture of nickel, cobalt, and manganese oxides, have been gathering interest as cathode materials, replacing traditional compounds like cobalt oxides.Quality analysis of the post-sintered materials or recycled batteries can be performed by titration, as demonstrated in this Application Note. A fully automated analysis of the corresponding metals can be performed with OMNIS and its pipetting equipment.
- AN-T-226Determination of functional groups in graphite and graphene oxide
Boehm titration is a quantitative analysis of functional groups on the surface of carbon materials based on their reactions with basic solutions of NaHCO3 (pKa = 6.4), Na2CO3 (pKa = 10.3), and NaOH (pKa = 15.7). This is a cost-efficient method that gives absolute values with high precision of the accessible, mainly oxygen-containing functional groups on the surface. Originally, Boehm titration was developed for carbon materials like conductive carbon black (CCB), activated carbon, porous carbon, and graphite. Modern carbon-based materials like graphene, graphene oxide (GO), or carbon nanotubes can also be analyzed this way.
- AN-T-235Determination of pH in carbon black
The pH value in carbon black, an essential additive in modern lithium-ion batteries, is accurately and reliably analyzed in this Application Note by using the 913 pH Meter equipped with a Unitrode easyClean according to ASTM D1512 as well as ISO 787-9 and GB/T 1717-1986.
- AN-V-239Iron speciation in LiFePO4 batteries
Lithium iron phosphate batteries offer users safety and durability. Polarographic speciation evaluates Fe(II) and Fe(III) in cathode material, useful for several tests.
- WP-052A Guide to Li-ion Battery Research and Development
The commercialization of Li-ion batteries in 1991 was the culmination of in-depth R&D conducted by scientists and engineers around the globe over the preceding few decades. Further development of Li-ion batteries and alternative rechargeable batteries has continued until today. As the world is rapidly moving towards a new era defined by green technologies, more practical and accurate R&D is required in order to meet the increasing demands for energy storage systems, specifically from the automotive industry. This white paper presents the basics of the Li-ion battery technology and guides the reader through the relevant techniques and terminologies in Li-ion battery research.
- WP-084Quality control of analytical parameters in battery production
Lithium-ion batteries (LIBs) are the most common rechargeable options available today. Production of LIBs needs to follow stringent quality standards.
- WP-089Water content determination in ketones using Hydranal™ NEXTGEN FA reagents
With Hydranal™ NEXTGEN FA reagents, the water content in ketones can be determined quickly and reliably. Compared to other existing KF reagents for ketones on the market, the side reactions are measurably better suppressed.