Aplikace
Aplikace
- 410000021-APortable Raman Spectroscopy in Forensics: Explosive Residues and Inflammable Liquids
The suitability and potential of Raman spectroscopy in forensics is widely known by forensic specialists who use it in the laboratory to identify a wide variety of compounds including explosives, drugs, paints, textile fibers and inks. However, the use of laboratory-grade Raman outside the laboratory, such as for in‐situ analysis at a crime scene, was something thought possible only in forensic‐fiction until just a few years ago. Fortunately, modern portable Raman spectrometers are commercially available, and their instrumental features are comparable to Raman lab‐ spectrometers.To prove this, some extraordinarily demanding and challenging applications, in which an in‐situ standoff identification of samples might be advisable, were tested.
- 410000024-BRaman solution suite for forensics applications
Law enforcement personnel, laboratory technicians, crime scene investigators and many others face a significant challenge for identification of materials in a forensic investigation.Traditionally, technicians used multiple forms of identification in order to collect results from various forms of forensic samples. Although certain technologies are ideal for precise laboratory identification, many technologies, such as Raman spectroscopy, can be successfully used for identification of multiple forensic sample types either directly in the field or in the lab. Raman spectroscopy is classified as a Category A analytical method by the Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG; Version 7.1, 2016).
- 410000052-ASee-Through Measurements of Illicit Substances in Commercial Containers with the TacticID®-1064 ST
The TacticID®-1064 ST is a 1064 nm handheld Raman system designed for law enforcement officials, first responders, and customs and border protection officers for rapid field identification of illicit substances such as narcotics, explosives, and other suspicious materials.The TacticID-1064 ST is specially designed with see-through Raman functionality to measure materials through both transparent and opaque containers. These through-barrier measurements remove the need for active sampling of potentially dangerous compounds such as fentanyl, leading to safer operations and reduced wait time for clear results.
- 410000054-ATechnical Note: Method Development with NanoRam®-1064
Although the process of building, validating and using a method is well-defined through software, the robustness of the method is dependent on proper practice of sampling, validation, and method maintenance. In this document, we will detail the recommended practices for using the multivariate method with NanoRam-1064. These practices are recommended for end users who are in the pharmaceutical environment, and can expand to other industries as well. This document aims to serve as a general reference for NanoRam-1064 users who would like to build an SOP for method development, validation and implementation.
- 8.000.6020Titrimetric analyses of biofuels
Several testing methods such as the determination of the acid and the iodine numbers in biodiesel as well as the quantification of sulfate and chloride in bioethanol are described.
- 8.000.6077Determining the water content in biodiesel by Karl Fischer titration as per EN ISO 12937
This poster describes the water determination in different biodiesel samples via direct coulometric titration, the Karl Fischer oven method and an automated KF pipetting system.
- 8.000.6087Determination of hexavalent chromium in drinking water according to a U.S. EPA Method
This poster looks at the possibility to modify the existing EPA Method to meet California's rigorous public health goal (PHG) of 0.02 µg/L. After optimizing instrument settings and method parameters, a method detection limit (MDL) of 0.01 µg/L is obtained.
- AB-046Potentiometric determination of cyanide
The determination of cyanide is very important not only in electroplating baths and when decontaminating wastewater but, due to its high toxicity, also in water samples in general. Concentrations of 0.05 mg/L CN- can already be lethal for fish.This Bulletin describes the determination of cyanide in samples of different concentrations by potentiometric titration.Chemical reactions:2 CN- + Ag+ → [Ag(CN)2]-[Ag(CN)2]- + Ag+ → 2 AgCN
- AB-061Potentiometric determination of silver – Accurate determination according to EN ISO and GB/T standards
Silver is an important metal not only in jewelry and silverware but also in electrical conductors and contacts. The knowledge of the exact silver content in fine silver and silver alloys ensures that quality standards for jewelry and silverware are met. As for the plating industry, the knowledge of the amount of silver in silver plating baths helps to run the bath efficiently.While X-ray fluorescence (XRF) is a fast alternative to determine the silver content in fine silver and silver alloys, it can only determine the silver content of the outermost sections of the metal. In contrast, titration offers a more comprehensive solution considering the whole sample, thus preventing fraud by thick plating.This application bulletin describes the potentiometric determination of silver in fine silver and silver alloys accordingto EN ISO 11427, ISO 13756, GB/T 17823, and GB/T 18996 as well as in silver plating baths by a titration with potassium bromide or potassium chloride, respectively
- AB-063Silicon, calcium, magnesium, iron and aluminum in cement after digestion and photometric titration
As much as the many types of cement may differ from one another, the characteristic that all of them have in common is the presence of the elements calcium, magnesium, iron, aluminum and silicon.Calcium, magnesium, iron and aluminum can be determined using various indicators following digestion of the cement sample using photometric titration with the Optrode at 610 nm. The determination of silicon, on the other hand, is gravimetric.
- AB-077Volumetric water content determination according to Karl Fischer – Tips and tricks for volumetric Karl Fischer titration
This Application Bulletin gives an overview of the volumetric water content determination according to Karl Fischer. Amongst others, it describes the handling of electrodes, samples, and water standards. The described procedures and parameters comply with the ASTM E203.
- AB-089Potentiometric analysis of anodizing baths
This Bulletin describes potentiometric titration methods for checking sulfuric acid and chromic acid anodizing baths. In addition to the main components aluminum, sulfuric acid, and chromic acid, chloride, oxalic acid, and sulfate are determined.
- AB-090Potentiometric analysis of tin plating baths
Potentiometric titration methods for the analysis of acid and alkaline tin plating baths are presented. The following methods are described: tin(II) / tin(IV) / total tin, free fluoroboric acid, or free sulfuric acid, chloride in acidic tin baths, free hydroxide, and carbonate in alkaline tin baths.
- AB-091Potentiometric analysis of brass and bronze plating baths
Methods are described for the potentiometric analysis of the following bath components:Brass plating bath: copper, zinc, free cyanide, ammonium, carbonate, and sulfite.Bronze plating bath: copper, tin, and free cyanide.
- AB-092Potentiometric analysis of lead plating baths
This Bulletin describes the potentiometric determination of lead, tin(II), and free fluoroboric acid.
- AB-093Potentiometric analysis of cadmium plating baths
This Bulletin describes titrimetric methods for the determination of cadmium, free sodium hydroxide, sodium carbonate, and total cyanide. The free cyanide can be calculated from the total cyanide and the Cd content.
- AB-101Complexometric titrations with the Cu ISE
This Bulletin describes the complexometric potentiometric titration of metal ions. An ion-selective copper electrode is used to indicate the endpoint of the titration. Since this electrode does not respond directly to complexing agents, the corresponding Cu complex is added to the solution. With the described electrode, it is possible to determine water hardness and to analyze metal concentrations in electroplating baths, metal salts, minerals, and ores. The following metal ions have been determined: Al3+, Ba2+, Bi3+, Ca2+, Co2+, Fe3+, Mg2+, Ni2+, Pb2+, Sr2+, and Zn2+.
- AB-102Conductometry
This bulletin contains two parts. The first part gives a short theoretical overview while more details are offered in the Metrohm Monograph Conductometry. The second, practice-oriented part deals with the following subjects:Conductivity measurements in general; Determination of the cell constant; Determination of the temperature coefficient; Conductivity measurement in water samples; TDS – Total Dissolved Solids; Conductometric titrations;
- AB-110Determination of free cyanide by polarography
This Application Bulletin describes a polarographic method for the determination of cyanide that allows to determine free cyanide fast and accurately. The determination also succeeds in solutions containing sulfides, where other methods fail. Cyanide concentrations in the range b(CN–) = 0.01...10 mg/L cause no problems. Interference caused by anions and complexed cyanides has been investigated.
- AB-125Simultaneous determination of calcium, magnesium, and alkalinity by complexometric titration with potentiometric or photometric indication in water and beverage samples
This bulletin describes the determination of calcium, magnesium, and alkalinity in water by complexometric titration with EDTA as titrant. It is grouped into two parts, the potentiometric determination and the photometric determination.There are multiple definitions of the different types of water hardness. In this Application Bulletin, the following definitions are used: alkalinity, calcium hardness, magnesium hardness, total hardness, and permanent hardness. Explanations of these definitions and other expressions are provided in the Appendix.Determination of alkalinity during the photometric part is carried out in a separate acid-base titration before the complexometric titration of calcium and magnesium in water. Permanent hardness can be calculated from these values. The determination of calcium and magnesium in beverages (fruit and vegetable juices, wine) is also described.The photometric part includes the determinations of total and calcium hardness and thereby indirectly magnesium hardness using Eriochrome Black T and calconcarboxylic acid as indicators (in accordance with DIN 38406-3).
- AB-130Chloride titrations with potentiometric indication
Potentiometric titration is an accurate method for determining chloride content. For detailed instructions and troubleshooting tips, download our Application Bulletin.
- AB-135Potentiometric determination of hydrogen sulfide, carbonyl sulfide, and mercaptans in petroleum products
This Bulletin describes the potentiometric determination of hydrogen sulfide, carbonyl sulfide, and mercaptans in gaseous and liquid products of the oil industry (natural gas, liquefied petroleum gas, used absorption solutions, distillate fuels, aviation gasoline, gasoline, kerosene, etc.). The samples are titrated with alcoholic silver nitrate solution using the Ag Titrode.
- AB-137Coulometric water content determination according to Karl Fischer
This Application Bulletin gives an overview of the coulometric water content determination according to Karl Fischer.Amongst others, it describes the handling of electrodes, samples, and water standards. The described procedures and parameters comply with the ASTM E1064.
- AB-178Fully automated analysis of water samples
The determination of the physical and chemical parameters as electrical conductivity, pH value, p and m value (alkalinity), chloride content, the calcium and magnesium hardness, the total hardness, as well as fluoride content are necessary for evaluating the water quality. This bulletin describes how to determine the above mentioned parameters in a single analytical run.Further important parameters in water analysis are the permanganate index (PMI) and the chemical oxygen deman (COD). Therefore, this Bulletin additionally describes the fully automated determination of the PMI according to EN ISO 8467 as well as the determination of the COD according to DIN 38409-44.
- AB-188pH measurement technique
This Bulletin, using practical examples, indicates how the user can achieve optimum pH measurements. As this Bulletin is intended for actual practice, the fundamentals - which can be found in numerous books and publications - are treated only briefly.
- AB-195Titrimetric determination of free boric acid and tetrafluoroboric acid in nickel plating baths
This Bulletin describes the simultaneous potentiometric titration of free boric acid and free tetrafluoroboric acid in nickel plating baths. After addition of mannitol, the formed mannitol complexes are titrated with sodium hydroxide solution. The determination is carried out directly in the plating bath sample; nickel and other metal ions do not interfere.
- AB-209Water in insulating oils, hydrocarbons, and their products – Accurate and reliable determination by Karl Fischer titration
Only coulometric Karl Fischer titration can determine low water contents with sufficient accuracy.This Application Bulletin describes the direct determination according to ASTM D6304, ASTM E1064, ASTM D1533, ASTM D3401, ASTM D4928, EN IEC 60814, EN ISO 12937, ISO 10337, DIN 51777, and GB/T 11146. The oven technique is described according to ASTM D6304, EN IEC 60814, and DIN 51777.
- AB-223Fully automated determination of uranium
This Bulletin describes the fully automated determination of uranium according to the method of Davies and Gray: Uranium(VI) is reduced in concentrated phosphoric acid solution with iron(II) to form Uranium(IV). With molybdenum as a catalyst, the excess iron(II) is oxidized with nitric acid. The nitrous acid that is formed is destroyed with sulfamic acid before uranium(IV) is titrated with a potassium dichromate solution in the presence of a vanadium catalyst.
- AB-249Determination of free and residual chlorine based on DIN EN ISO 7393-1 and APHA 4500-Cl
Chlorine is frequently added to drinking water for disinfection. Depending on the reactivity and the concentration of chlorine, toxic disinfection by-products (DBPs) can thereby be released. Therefore, it is necessary to strictly control the chlorine concentration in the drinking water. This Application Bulletin shows how to determine the chlorine concentration according to three standard methods: DIN EN ISO 7939-1, APHA 4500-Cl Method B, and APHA 4500-Cl Method I.
- AB-344Automated analysis of etch acid mixtures for silicon substrates with thermometric titration
This bulletin deals with the automated determination of mixtures of HNO3, HF and H2SiF6 in the range of approximately 200-600 g/L HNO3, 50-160 g/L HF, and 0-185 g/L H2SiF6 using thermometric titration.Etch acid mixtures containing HNO3, HF and H2SiF6 from the etching of silicon substrates can be analyzed in a sequence of two determinations using the 859 Titrotherm. The first determination involves a direct titration with standard c(NaOH) = 2 mol/L, followed by a back titration with c(HCl) = 2 mol/L. This determination yields the H2SiF6 content plus a value for the combined (HNO3+HF) contents. The second determination consists of a titration with c(Al3+) = 0.5 mol/L to determine the HF content. For freshly made up mixtures of HNO3 and HF containing no H2SiF6, a linked two-titration sequence is employed. Results from the two determinations are used by tiamoTM to yield individual results for HNO3, HF and H2SiF6.
- AB-404Total acid number titration of petroleum products
The determination of the acid number plays a significant role in the analysis of petroleum products. This is manifested in the numerous standard procedures in use over the world (internal specifications of multinational companies, national and international specifications of ASTM, DIN, IP, ISO, etc.). These procedures differ mainly in the composition of the used solvents and titrants.This bulletin describes the determination of the acid number in petroleum products by applying different types of titration.The potentiometric determination is described according to ASTM D664, the photometric according to ASTM D974 and the thermometric titration according to ASTM D8045.
- AB-405Total base number titration of petroleum products
This Application Bulletin shows the determination of the total base number in petroleum products by applying different titration types according to various standards.
- AB-416Determination of arsenic in water with the scTRACE Gold
This Application Bulletin describes the determination of arsenic in water samples by anodic stripping voltammetry using the scTRACE Gold sensor. This method makes it possible to distinguish between As(total) and As(III). With a deposition time of 60 s, the limit of detection for As(total) is 0.9 µg/L, for As(III) it is 0.3 µg/L.
- AB-427Acid number in petroleum products with thermometric titration
This Application Bulletin describes the determination of the total acid number in various oil samples by catalytic thermometric titration as per ASTM D8045.
- AB-430Determination of uranium by adsorptive stripping voltammetry according to DIN 38406-17
This Application Bulletin describes the methods for the determination of uranium by adsorptive stripping voltammetry (AdSV) according to DIN 38406 part 17. The method is suitable for the analysis of ground, drinking, sea, surface and cooling waters, in which the concentration of uranium is of importance. The methods can, of course, also be used for the trace analysis in other matrices.Uranium is determined as chloranilic acid complex. The limit of detection in samples with low chloride concentration is about 50 ng/L and in seawater about 1 µg/L. Matrices with high chloride content can only be analyzed after reduction of the chloride concentration by means of a sulfate-loaded ion exchanger.
- AN-C-135Cations in drinking water using Metrosep C 4 - 150/4.0 column according to ISO 14911.
Drinking water analysis is strongly regulated by standards. In this Application Note, the cation determination according to ISO 14911 is shown. The Metrosep C 4 - 150/4.0 is the optimum separation column for this purpose.
- AN-C-177Dicyclohexylamine (DCHA) and methyldicyclohexylamine (MDCHA) in cooling lubricant applying Inline Dialysis
Abrasive machining of e.g., metal parts requires a cooling lubricant. Their purpose besides cooling and lubrication is to inhibit corrosion. Amines are added to the emulsion to keep the pH high. In the actual application, DCHA and MDCHA have to be analyzed besides other amine components and inorganic cations. To avoid oil contamination on the IC system, Inline Dialysis is applied. The detection is performed by direct conductivity detection.
- AN-COR-001Corrosion part 1 – basic concepts
Corrosion refers to a process that involves deterioration or degradation of metal. The most common example of corrosion is the formation of rust on steel. Most corrosion phenomena are of electrochemical nature and consist of at least two reactions on the surface of the corroding metal.
- AN-COR-002Corrosion Part 2 – Calculation of Corrosion Parameters with NOVA
Electrochemical methods provide an alternative to traditional methods used to determine the rate of corrosion. For example, corrosion rates, the rates at which a specimen corrodes, can be calculated from simple electrochemical measurements like a linear sweep voltammetry (LSV).
- AN-COR-003Measurement of polarization resistance
Polarization resistance (Rp) can quantify the corrosion resistance of metals as an alternative to Tafel analysis. Its methodology and practical use as described in ASTM G59 are discussed.
- AN-COR-004Corrosion part 4 – equivalent circuit models
Electrochemical impedance spectroscopy or EIS has been used effectively to measure the polarization resistance for corrosion systems and for the determination of corrosion mechanisms.
- AN-COR-005Corrosion part 5 – corrosion Inhibitors
A corrosion inhibitor is a substance that reduces the corrosion rate of a metal. A corrosion inhibitor is usually added in a small concentration to the corrosive environment. This application note shows how Metrohm Autolab instruments can be used to check the quality of inhibitors.
- AN-COR-009Electrochemical impedance spectroscopy of three coated aluminum samples
In this Application Note, EIS is applied on three coated aluminium samples, before and after the stepwise dissolution measurement (SDM). This technique has been reviewed in the Application Note AN-COR-08.
- AN-COR-010Electrochemical Corrosion Studies of Various Metals
Corrosion of metals is a problem seriously affecting not only many industrial sectors, but also private life, resulting in enormous costs. In this application note, the results gained during electrochemical corrosion studies on different metals are compared to literature data.
- AN-COR-016ASTM G61: Standard test method for conducting cyclic potentiodynamic polarization
This Application Note details ASTM G61-compliant corrosion measurements performed with VIONIC powered by INTELLO using Metrohm’s ASTM-compliant corrosion cells.
- AN-COR-017Coulometric Reduction as per ASTM B825
The ASTM B825 is used to determine the corrosion and tarnish film on metal surfaces. This is achieved by using the so-called cathodic reduction method. With the help of a Metrohm Autolab PGSTAT302N and a Metrohm Autolab 1 L corrosion cell, a procedure to replicate the ASTM B825 is shown.
- AN-COR-018Evaluation of organic coatings on metals using Autolab PGSTAT based on ISO 17463 – Paints and Varnishes
The International Standard ISO 17463 describes the determination of the anticorrosive properties of high impedance organic protective coatings on metals. This technique uses cycles composed of electrochemical impedance spectroscopy (EIS) measurements, cathodic polarizations and potential relaxation. This application note shows the compliance of the Metrohm Autolab PGSTAT M204 and flat cell with the standard ISO 17463.
- AN-COR-019Determining the corrosion rate with INTELLO
Tafel analysis is an important electrochemical technique used to understand reaction kinetics. By studying the Tafel slope, it reveals the rate-determining steps in electrode reactions, aiding fields like corrosion and fuel cell research. This method helps industries optimize processes and improve device performance by tailoring materials and conditions for greater efficiency.
- AN-CS-010Traces of lithium and sodium besides monoethanolamine in water-steam circuits of thermal power plants
Boiler feed water is a working medium in thermal power plant. To keep corrosion low, the pH value should be in the slightly alkali range, which is why amines are added to the feed water. This addition must be monitored regularly. Also important is the monitoring of the sodium concentration, because an increase of this indicates that cooling water is seeping into the condenser. Ion chromatography with conductivity detection following sequential suppression is the optimum system for monitoring, particularly in combination with intelligent Sample Preconcentration and Matrix Elimination.
- AN-H-019Determination of chlorine in household bleaches
Determination of chlorine in household bleaches.