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This white paper differentiates between methods for 
identification of unknowns and verification of known 
materials. The goal of this publication is, ultimately, 
to inform the user of the capabilities of the handheld 
Metrohm Raman Mira P system. Best practices for 
building robust training sets for materials verification 
with Mira P can also be found here.
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Figure 2. Raman spectra of very similar fatty acids/alcohol

Figure 1. Structure of fatty acids sampled below
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HQI for Identification of Unknowns
For identification with the Mira P, a Pearson correlation tech-
nique generates a Hit Quality Index (HQI) or r2, which is a 
measure of spectral similarity between unknown and library 
spectra. The displayed match score varies between 0-1, where 
larger values indicating greater spectral similarity. The instru-
ment generates a list of compounds with HQI scores above a 
specified threshold, usually 0.85. This method of identification 
is a) easy to implement, b) fast, and c) suitable for use with ex-
tensive chemical libraries.

While this method is widely used and reliable in some applica-
tions, it does not adequately account for very minor differenc-
es between similar molecules in Raman spectra. For instance, 
Figure 2 illustrates the spectra of a family of four fatty acids 
and a similar alcohol, which differ primarily in the length of 
the saturated carbon chain, Figure 1. The spectral similarity 
is undeniable, and it reflects the similarity of the compounds.

Introduction
The Metrohm Instant Raman Analyzer Pharmaceutical (Mira 
P) is a handheld Raman spectrometer designed for rapid, 
nondestructive identification and verification of chemicals, 
materials, and pharmaceuticals. Raman spectroscopy is an 
established technique for identification of unknowns by 
comparison of sample spectra within reference libraries; 
however the Mira P is uniquely capable of material verification 
within the Metrohm Raman product line. This white paper 
describes how statistical analyses relate to experimental 
design and how both can help the user create robust models 
for verification.
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Library Match (HQI)

Lauric

Acid

Myristic Acid Palmitic

Acid

Stearic

Acid

Stearyl

Alcohol

Lauric 

Acid
1.00 0.98 0.95 0.95 0.88

Myristic 

Acid
0.98 1.00 0.98 0.96 0.91

Palmitic 

Acid
0.96 0.98 1.00 0.98 0.94

Stearic 

Acid
0.94 0.96 0.97 1.00 0.96

Stearyl 

Alcohol
0.87 0.91 0.93 0.97 1.00
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PCA scatter plots, along with a defined confidence inter-
val, become the reference models against which future 
samples are measured3. Each sample spectrum is projected 
onto the PCA model to see how well it fits into the model 
limits, which are determined by the confidence interval.

Figure 3. PCA scatter plots depicting fatty acid family

HQI Values
Because HQI is a measurement of correlation between refer-
ence and sample spectra, it can result in misidentification of 
very similar materials. In other words, false positives can be 
a result of analysis with HQI. The values in Table 1 reflect the 
similarity of the molecules and their spectra shown in Figures 
1 and 2.

Table 1. HQI match scores for fatty acid family

When each compound in this family is compared to the others, 
the reported HQI values are all above the assigned threshold 
of 0.85. As a result, there is poor differentiation between 
these materials.

Verification of Samples with p-values
A verification method should successfully address this issue. 
Unlike identification techniques based on similarities between 
spectra, the verification method reflects spectral differences. 
This method is based on Principal Component Analysis (PCA), 
a statistical analysis that reduces a complex data set down to 
basic features that best describe the data, its “principle com-
ponents.”2 This method transforms highly correlated spectra 
into a small set of orthogonal variables, which can be visua-
lized as scatter or score plots. Thus, the spectra shown in Figu-
re 2 can be modeled in a way that describes variances within 
and between compounds rather than similarities, Figure 3:
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Figure 4. Confidence levels represented by Hotelling T2 ellip-
soids. A= 90%, B= 95%

Hypothesis Testing and p-values
When a sample spectrum is projected onto the model space, 
the result is a p-value: an indication of how well the samp-
le fits within the model limits at a given confidence level.4 In 
other words, the p-value addresses the significance of results 
when a statistical hypothesis test is performed. For PCA analy-
sis and verification of Raman spectra, the null hypothesis (Ho) 
reads, “The measured spectrum belongs to the training set 
used to build the model.” A small p-value (<0.05) indicates 
strong evidence against Ho, and so the null hypothesis is re-
jected and the sample FAILS to belong to the model. A large 
p-value results in a PASS, indicating that the sample belongs to 
the model population, and higher p-values are accepted with 
greater confidence. PCA and subsequent p-values provide a 
very different portrait of the fatty acid family, as compared to
analysis with HQI. Table 2 indicates infinite distinction bet-
ween the fatty acids.

Table 2. p-values and validation results for fatty acid family

Training Sets

Lauric

Acid

Myristic

Acid

Palmitic

Acid

Stearic

Acid

Stearyl

Alcohol

Lauric 

Acid

PASS

0.127

FAIL

0.00

FAIL

0.00

FAIL

0.00

FAIL

0.00

Myristic 

Acid

FAIL

0.00

PASS

0.494

FAIL

0.00

FAIL

0.00

FAIL

0.00

Palmitic 

Acid

FAIL

0.00

FAIL

0.00

PASS

0.331

FAIL

0.00

FAIL

0.00

Stearic 

Acid

FAIL

0.00

FAIL

0.00

FAIL

0.00

PASS

0.365

FAIL

0.00

Stearyl 

Alcohol

FAIL

0.00

FAIL

0.00

FAIL

0.00

FAIL

0.00

PASS

0.628

A

B
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Confidence Intervals
The confidence interval is defined by a Hotelling T2 ellipsoid, 
the ovals in the figures above and below, and is a very impor-
tant designation of how much variance is acceptable within 
each group.4 For example, confidence levels of 90 and 95% 
have been projected onto the plots shown in Figure 4; both 
are very good representations of the data set, but they differ 
in the acceptance level of the model. In example A, the 90% 
confidence level means that fewer samples will be accepted as 
belonging to the training set, but the model produces greater 
confidence in the accuracy of the results. A 95% confidence 
level shown in B illustrates that samples with a greater level 
of variance (distance from the center=Mahalanobis distance) 
may be verified as part of the model.
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Building Models through Training Sets
The effectiveness of a PCA model depends entirely on the 
training set, which is the library of highly correlated spectra 
represented in the model population.  Using the Mira P Ra-
man spectrometer and MiraCal software, the user builds a 
training set by collecting a minimum of 20 spectra of a single 
substance with some allowed variation.

Stochastic variation must be included to create a model 
that corrects for random variation that might interfere with 
verification of the sample. These are “field conditions” 
such as ambient light and temperature, container material, 
heterogeneity of a sample, perhaps even variation in the 
thickness of a container. They must be accommodated to 
create a robust and continuous training set that improves the 
confidence level of the reported p-value. A recap of possible 
sources of variation is seen in table 3.

Types of Variance
Variance in the training set is necessary to create a robust mod-
el that accurately represents the identity of the sample.  Vari-
ables can be defined as deterministic, which are the known 
sources of variation inherent in the identity of the sample or 
the instrument.  Stochastic or probabilistic sources of variance 
include experimental factors that should be accounted for so 
that they do not interfere with the accuracy of the model in 
different circumstances.6

Sources of Variance
Deterministic variation must be included in a training set in 
order to create a representative model.  For example, the user 
might build a training set using samples from multiple sourc-
es.  If specific instrument acquisition parameters, such as laser 
power, temperature, integration time, and number of scans, 
are to be used for experiments the training set must be built 
using those parameters. These parameters are stored as an 
Operating Procedure to be used for future measurements to 
maintain the consistency of the model. However, the training 
set should be built over several days during which the instru-
ment goes through a number of OFF/ON cycles in order to in-
corporate instrument variability.

Types of Variation Variables

Deterministic Sample Source/ Producer

Attachment

Laser Power

Laser Temperature

Integration Time

Raster ON/OFF

Number of Scans/ Averages

Stochastic Ambient Light

Sample Temperature

Container Material

Container Thickness

Sample Homogeneity

Contaminants

Table 3. Possible types of variations
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Editing for Robust Training Sets
As a reminder, a robust training set incorporates some varia-
tion between spectra, and it must also inherently represent 
the unique fingerprint of the material of interest. To ensure 
both of these qualities, visual inspection of the spectra includ-

Figure 6. Zoom of Lauric Acid spectra

As an example, figure 5 is a sampling of the spectra included 
in the lauric acid training set, which was used to collect the 
data described in tables 1 and 2. 20 spectra were selected 
from a total of 60, in order that we might see them better. An 
acceptable level of variance in intensity (height of the peaks) 
can be seen, and this represents natural variation encountered 
during the course of experimentation. If we zoom into the 
highlighted region of this figure, we can see other examples 
of how these spectra influence the training set. 

Figure 5. 20 Lauric Acid spectra

ed in a training set, followed by careful editing can improve-
materials verification with the Mira P. Unique spectra that are 
obviously different than others in the set can be removed, so
long as care is taken to leave a healthy number of representa-
tive spectra.

The vertical dashed line in Figure 6 demonstrates that peak 
shift alignment is consistent between all spectra. This is a cru-
cial example of the information built into a PCA model, as the 
unique peaks in any Raman spectra are the fingerprint that 
makes Raman such a sensitive verification technique. In con-
trast, the arrows indicate acceptable variance encountered 
during sampling, which are retained for a robust training set.
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Conclusion
This paper contrasts identification and verification methods 
for the Mira P handheld spectrometer, which are distinct 
analyses for different applications. Identification is used when 
the identity of a sample is unknown, and verification is used 
for confirmation of a known sample. Included in this paper 
are user guidelines for building robust training sets that will 
optimize the accuracy of the verification method.
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